Document Solutions for Imaging 1

Table of Contents

Document Solutions for Imaging Overview 3
Key Features 4
Getting Started 5-6
Quick Start 7-9
License Information 10
Technical Support 11
Contacting Sales 12
Redistribution 13
End-User License Agreement 14
Product Architecture 15-20
Features 21
Create Image 22-28
Load Image 29-31
Save Image 32
Work with GIF files 33-35
Work with TIFF Images 36-38
Work with ICO files 39-40
Work with SVG Files 41-45
Work with WebP Files 46
Process Image 47-58
Apply Effects 59-62
Layouts 63-80
Complex Graphic Layouts 81-92
Tables 93-118
Work with Image Colors 119-121
Transparency Mask 122-128
Work with Graphics 129
Draw and Fill Shapes 130-134

Clip Region 135-136
Align Image 137-138
Apply Matrix Transformation 139-140
Add Transparency Layer 141-142
Interpolation Mode 143-146

Add Shadow 147-151

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 2

Add Glow and Soft Edges 152-154
Work with Text 155-169
Work with Exif Metadata 170-171

Render HTML to Image 172-176
Render Using Skia Library 177-178
Document Solutions Image Viewer 179
Samples 180
API Reference 181
Release Notes 182
Breaking Changes 183
Version 7.0.0 184
Version 6.2.0 185
Version 6.1.0 186-187
Version 6.0.0 188
Version 5.2.0.800 189
Version 5.1.0.790 190
Version 5.0.0.762 191
Version 4.2.0.715 192
Version 4.1.0.658 193
Version 4.0.0.616 194
Version 3.1.0.508 195
Version 3.0.0.414 196
Version 2.2.0.310 197-198

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 3

Document Solutions for Imaging Overview

Document Solutions is a cross-platform solution for document management which provides a universal document,
editor and viewer solution for all popular document formats.

Document Solutions for Imaging (Dslmaging, previously Gclmaging), is a part of Document Solutions product
line, that offers imaging API for image processing without using any external image editor. The library can create,
load, modify, and save images programmatically. The library supports Windows, macOS, and Linux and can also be
deployed as FaaS with AWS Lambda, Azure Functions, etc. The library offers a feature-rich API that can be used to
create and load popular image formats, such as JPEG, PNG, BMP, GIF, TIFF, ICO, SVG, WebP and apply advanced
image processing techniques and save them. In addition to reading and writing images, the library also allows
developers to rotate, crop, resize, convert images, draw and fill graphics on images, draw text on images, apply
dithering and thresholding effects on grayscale images, apply effects on RGB images, apply advanced TIFF features
and much more.

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

Key Features

Dslmaging provides different features that enable the developers to build intuitive and professional-looking
applications. The main features for DsImaging Library are as follows:

Fast and efficient library
Dslmaging saves memory and time with its lightweight APl architecture. It allows you to apply advanced
imaging effects in less time for yielding high-performance results.

Create, load, modify, convert and save images programmatically

Using Dslmaging, you can programmatically create images in .NET Standard applications, with full support on
Windows, macOS and Linux, without the help of an external image processor. You can also load, modify,
convert the popular image formats, such as JPEG, PNG, BMP, GIF, and TIFF, and save them again.

Process images with advanced imaging effects
Dslmaging lets you rotate, flip, crop, resize, composite, blend, apply dithering, thresholding and RGB effects on
images.

Process GIF files
Dslmaging allows you to read individual frames from a GIF file and save them as images in different formats
supported by DsImaging. It also supports the creation of a GIF file by using multiple frames.

Create thumbnails
Dslmaging allows you to downscale the images and apply various interpolation algorithms for creating image
thumbnails.

Draw and fill graphics
Using Dslmaging, you can draw and fill graphics like lines, polygons, rectangles, rounded rectangles, ellipses,
paths on the graphics.

Advanced processing of image colors
Dslmaging allows you to adjust color intensity and histogram levels of an image. Additionally, it lets you
perform advanced imaging operations with color channels and color quantization.

Draw text on images
Dslmaging lets you draw text with advanced font and allows paragraph formatting on images. It also supports
RTL text and Kashida on Arabic text, and bitmap glyphs in OpenType CJK fonts.

Advanced TIFF processing
Dslmaging supports reading and writing TIFF frames, apply TIFF compression and color spaces, tiled images
and other advanced processing on TIFF images.

Work with EXIF (Exchangeable Image File Format) Metadata

Dslmaging allows you to extract the EXIF metadata, such as the shutter speed, flash use, focal length, light
value, location, title, creator, date, description, copyright etc. from the JPEG, PNG, TIFF images and save EXIF
profile to the same image formats.

Seamless HTML to Image rendering
Dslmaging library along with DsHtml library, allows you to render HTML text or files to images.

For additional information about the supported features in DsImaging, see Features topic.

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 5

Getting Started

System Requirements

The Dslmaging packages are fully supported on Visual Studio 2017 or later for Windows, Visual Studio for MAC, and
Visual Studio Code for Linux and are compatible with the following:

.NET 5, .NET 6, and .NET 7

.NET Core 2.x and 3.x

.NET Standard 2.x

.NET Framework 4.6.1 or higher

Setting up an Application

Dslmaging references are available through NuGet, a Visual Studio extension that adds the required libraries and
references to your project automatically. To work with Dslmaging, you need to have following references in your
application:

Reference Purpose

DS.Documents.Imaging To use Dslmaging in an application, you need to reference (install) just the
DS.Documents.Imaging package. It will pull in the required infrastructure
packages.

DS.Documents.Imaging.Windows DS.Documents.Imaging.Windows provides support for font linking specified in
the Windows registry, and access to native Windows imaging APIs, improving
performance and adding some features (e.g. reading TIFF-JPEG frames).

DS.Documents.DX.Windows DS.Documents.DX.Windows is an infrastructure package used by
DS.Documents.Imaging.Windows. You do not need to reference it directly.

DS.Documents.Imaging.Skia Skia represents a rendering engine based on SkiaSharp and is used for drawing
text and graphics. You can optionally install this package for rendering quality
graphics across various platforms. For more information, see Render using Skia
Library.

] Note: With v7.0, GrapeCity.Documents.Imaging (Gclmaging) package is renamed to DS.Documents.Imaging
(Dslmaging). The namespaces and classes within DS.Documents.Imaging remain the same, which provide the
same functionality and are backwards compatible with GrapeCity.Documents.Imaging, ensuring minimal impact
on your existing projects.

To upgrade Gclmaging package to Dslmaging package in your existing projects, follow one of the below options:

® Update package using Migration tool:
1. The migration tool is present in the package downloaded from the website. Follow the instructions
on the tool for a seamless migration from Gclmaging to Dslmaging.
® Update package manually from NuGet package manager:
1. In Solution Explorer, right-click either Dependencies or a project and select Manage NuGet
Packages.
2. In Installed tab, click on GrapeCity.Documents.Imaging package and click Uninstall to remove it
and its dependencies from the project.
3. In Browse tab, type "ds.documents” or "DS.Documents"” in the search text box at the top and find
the package "DS.Documents.Imaging".
4. Click Install to add the DS.Documents.Imaging package and its dependencies into the project.

© 2023 MESCIUS inc. All rights reserved.

https://github.com/dotnet/core/blob/main/release-notes/6.0/supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/7.0/supported-os.md

Document Solutions for Imaging 6

Add reference to Dsimaging in your application from NuGet.org

In order to use Dslmaging in a .NET Core, ASP.NET Core, .NET Framework application (any target that supports .NET
Standard 2.0), install the NuGet packages in your application using the following steps:

Visual Studio for Windows

Open Visual Studio.

Create any application (any target that supports .NET Standard 2.0).

Right-click the project in Solution Explorer and choose Manage NuGet Packages.
In the Package source on top right, select nuget.org.

Click Browse tab on top left and search for "DS.Documents”.

On the left panel, select DS.Documents.Imaging

On the right panel, click Install.

In the Preview Changes dialog, click OK and choose | Accept in the next screen.

NV A WN =

This adds all the required references of the package to your application. After this step, follow the steps in the Quick
Start section.

Visual Studio for Mac

Open Visual Studio for Mac.

Create any application (any target that supports .NET Standard 2.0).

In tree view on the left, right-click Dependencies and choose Add Packages.

In the Search panel, type "DS.Documents”.

From the list of packages displayed in the left panel, select DS.Documents.Imaging and click Add Packages.
Click Accept.

A e

This automatically adds references of the package and its dependencies to your application. After this step, follow the
steps in the Quick Start section.

Visual Studio Code for Linux

Open Visual Studio Code.
Install Nuget Package Manager from Extensions.
Create a folder "MyApp" in your Home folder.
In the Terminal in Visual Studio Code, type "cd MyApp"
Type command "dotnet new console"
Observe: This creates a .NETCore application with MyApp.csproj file and Program.cs.
Press Ctrl+P. A command line opens at the top.
7. Type command: ">"
Observe: "Nuget Package Manager: Add Package" option appears.
8. Click the above option.
9. Type "DS" and press Enter.
Observe: DS packages get displayed in the dropdown.
10. Choose DS.Documents.Imaging.
11. Type following command in the Terminal window: "dotnet restore"

uhwn =

o

This adds references of the package to your application. After this step, follow the steps in the Quick Start section.

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 7

Quick Start

The following quick start sections help you in getting started with the DsImaging library:

® Create and Save an Image
® Load and Modify an Image

Create and Save an Image

This quick start covers how to create an image and draw string on it in a specified font using a .NET Core or .NET
Standard application. Follow the steps below to get started:

1. Create an instance of GcBitmap class
2. Draw and fill a rectangle
3. Save the image

Hello World!

Step 1: Create an instance of GcBitmap class

1. Create a new application (NET Core Console App\Windows Forms App) and add the references.
2. Include the following namespaces

o using GrapeCity.Documents.Imaging;
3. Create a new image using an instance of GeBitmap class, through code.

C#

//Create GcBitmap

var bmp = new GcBitmap (1024, 1024, true, 96, 96);
//Create a graphics for drawing

GcBitmapGraphics g = bmp.CreateGraphics () ;

Back to Top
Step 2: Draw and fill a rectangle

Add the following code to draw a rectangle using the RectangleF class, and then add text to it using the DrawString
method of GeBitmapGraphics class.

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

C#

//Add a radial gradient
RadialGradientBrush r= new RadialGradientBrush (Color.Beige,
Color.RosyBrown, new PointF(0.5f, 0.5f), true);

//Draw a rectangle
var rc = new RectangleF (0, 0, bmp.Width, bmp.Height) ;

//Fill the rectangle using specified brush
g.FillRectangle (rc, r);

// Create a text format for the "Hello World!" string:
TextFormat tf = new TextFormat () ;

//Pick a font size, color and style
tf.FontSize = 80;

tf.FontStyle = FontStyle.BoldItalic;
tf.ForeColor = Color.Chocolate;

//Draw the string (text)
g.DrawString ("Hello World!", tf, rc, TextAlignment.Center,
ParagraphAlignment.Center, false);

Back to Top
Step 3: Save the image

Save the image using SaveAsJpeg method of the GeBitmap class.

C#

//Save bitmap as JPEG image
bmp.SaveAsJpeg ("HelloWorld.jpg") ;

Back to Top

Load and Modify an Image

This quick start covers how to load an existing image, modify and save it using a .NET Core or .NET Standard
application. Follow the steps below to get started:

1. Load an existing image
2. Modify the image
3. Save the image

Step 1: Load an existing image

1. Create a new application (NET Core Console App\Windows Forms App) and add the references.
2. Include the following namespace

o using GrapeCity.Documents.Imaging;
3. Load an existing image using Load method of the GeBitmap class.

C#

//Create GcBitmap

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 9

var bmp = new GcBitmap () ;

var fs = new FileStream(Path.Combine ("puffins-small.jpg"), FileMode.Open,
FileAccess.ReadWrite) ;

//Load image

bmp.Load (fs) ;

Back to Top
Step 2: Modify the image

1. Add the following code that to add a text using the DrawString method of GeBitmapGraphics class to draw
string.
C#

//Create a graphics for drawing
GcBitmapGraphics g = bmp.CreateGraphics();

// Create a text format for the string:
TextFormat tf = new TextFormat();

// Pick a font size, color and style
tf.FontSize = 10;

tf.ForeColor = Color.Red;
tf.FontStyle = FontStyle.BoldItalic;

//Draw the string (text)
g.DrawString ("Penguins", tf, new PointF (10, 10));

Back to Top
Step 3: Save the image
Save the image using SaveAsJpeg method of the GeBitmap class.

C#

//Save bitmap
bmp.SaveAsJpeg ("NewImage.jpg") ;

Back to Top

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 10

License Information

Document Solutions for Imaging supports the following types of license:

® Unlicensed
e Evaluation License
e Licensed

Unlicensed
After downloading the product, the product works in the unlicensed mode. However, not more than 10 instances of

GcBitmapGraphics and GecWicBitmapGraphics (combined) can be created when the product is used without license.

If you have already created 10 instances of GeBitmapGraphics (BitmapRenderer) and GcWicBitmapGraphics
(RenderTarget), following exception is thrown on creating the next instance:

‘Unlicensed copy of Document Solutions for Imaging. The number of GcBitmapGraphics (BitmapRenderer) and
GcWicBitmapGraphics (RenderTarget) instances is limited to 10. Contact us.sales@mescius.com to get your 30-day
evaluation key.'

Evaluation License
Dslmaging evaluation license is available to users for 30 days to evaluate the product. If you want to evaluate the

product, you can ask for evaluation license key by sending an email to us.sales@mescius.com.

The evaluation version has an expiration date that is determined when an evaluation key is generated. After applying
the evaluation license key, you can use the complete product until the license expiry date.

After the expiry date, following exception is thrown:
'This evaluation copy of Document Solutions for Imaging has expired. Contact us.sales@mescius.com to purchase your
license. To continue using Dslmaging with limitations, remove the expired evaluation license key.'

Licensed

Dslmaging production license is issued at the time of purchase of the product. If you have a production license,
you can access all the features of DsImaging without any limitations.

Apply License

To apply evaluation/production license in DsImaging, the long string key needs to be copied to the code in one of the
following two ways.

® Pass it as an argument to the GeBitmap's ctor:
var bmp = new GcBitmap () ;
bmp.ApplyLicenseKey ("Key") ;
This licenses the instance being created.

e (all a static method on GcBitmap:
GcBitmap.SetLicenseKey ("key") ;
This licenses all the instances while the program is running.

GcWicBitmap and GeSvgGraphics are licensed just like GeBitmap, using the same keys and instance counts. Also,
please note that if a GeBitmap is converted to GcWicBitmap or vice versa, the converted object also gets licensed if
the original was.

© 2023 MESCIUS inc. All rights reserved.

mailto:us.sales@grapecity.com
mailto:us.sales@mescius.com
mailto:us.sales@mescius.com
mailto:us.sales@grapecity.com
mailto:us.sales@mescius.com

Document Solutions for Imaging

Technical Support

If you have a technical question about this product, consult the following sources:

® Product forum: https://developer.mescius.com/forums
® Email: us.sales@mescius.com

© 2023 MESCIUS inc. All rights reserved.

11

https://developer.mescius.com/forums
mailto:us.sales@mescius.com

Document Solutions for Imaging 12

Contacting Sales

If you would like to find out more about our products, contact our Sales department using one of these methods:

World Wide Web site https://developer.mescius.com/

E-mail us.sales@mescius.com

Phone (800) 858-2739 or (412) 681-4343 outside the US.A.
Fax (412) 681-4384

© 2023 MESCIUS inc. All rights reserved.

https://developer.mescius.com/
mailto:us.sales@mescius.com

Document Solutions for Imaging 13

Redistribution

To distribute an application containing the DsImaging API, it is necessary to have a valid Distribution License and meet
all System Requirements.

| & Dslmaging makes it easy to deploy your application to your local servers or cloud offerings such as Azure.

For more information about Distribution License, contact our Sales department using one of these methods:

World Wide Web site https://developer.mescius.com/
E-mail us.sales@mescius.com

Phone 1.800.858.2739 or 412.681.4343
Fax (412) 681-4384

© 2023 MESCIUS inc. All rights reserved.

https://developer.mescius.com/forums
mailto:us.sales@mescius.com

Document Solutions for Imaging 14

End-User License Agreement

The MESCIUS licensing information, including the MESCIUS end-user license agreement, frequently asked licensing
guestions, and the MESCIUS licensing model, is available online. For detailed information on licensing, see MESCIUS
Licensing. For MESCIUS end-user license agreement, see End-User License Agreement For MESCIUS Software.

© 2023 MESCIUS inc. All rights reserved.

https://developer.mescius.com/licensing/grapecity/
https://developer.mescius.com/licensing/grapecity/
https://developer.mescius.com/legal/eula

Document Solutions for Imaging 15

Product Architecture

Packaging

Dslmaging is a collection of cross-platform .NET class libraries written in C#, providing an API that allows to create
image from scratch and to load, analyze and modify existing images.

Dslmaging is compatible with .NET Core 2.x/3.x, .NET Standard 2.x, .NET Framework 4.6.1 or higher, and .NET 6 or
higher.

Dslmaging and supporting packages are available on nuget.org:

DS.Documents.Imaging
DS.Documents.Imaging.Windows
DS.Documents.Imaging.Skia
DS.Documents.DX.Windows

To use Dslmaging in an application, you need to reference just the DS.Documents.Imaging package. It pulls in the
required infrastructure packages.

On a Windows system, you can optionally install DS.Documents.Imaging.Windows. It contains GcWicBitmap class
that works efficiently with various image formats and allows drawing text and graphics using DirectWrite/Direct2D-
based functionality. Also, it provides support for font linking specified in the Windows registry. This library can be
referenced on a non-Windows system, but does nothing.

Dslmaging API Overview

Namespaces
Namespaces Description
GrapeCity.Documents.Drawing Framework for drawing on the abstract GeGraphics surface.
GrapeCity.Documents.Imaging Types used to create, process and modify images. Nested namespaces
contain types supporting specific image spec areas:
e GrapeCity.Documents.Drawing
® GrapeCity.Documents.Imaging
GrapeCity.Documents.Text Text processing sub-system.

Grapecity.Documents.Imaging.Skia Types used for drawing text and graphics using a highly optimized library
SKIA.

Dslmaging provides classes for three main purposes.

e (Creating new images or loading images from various formats including multi-frame GIFs and TIFFs

® Drawing graphics and text on the in-memory bitmaps, applying various effects and transformation to the
bitmaps

® Saving the resulting images as JPEG, PNG, BMP, multipage TIFF, multi-frame GIF or WebP.

Dslmaging classes can be used efficiently in a multi-threaded environment. They don't depend on system handles or
Ul threads.

Image Containers

© 2023 MESCIUS inc. All rights reserved.

https://www.nuget.org/packages?q=grapecity.documents

Document Solutions for Imaging 16

There are several containers in the DsImaging package (DS.Documents.Imaging) and in the related Windows specific
package (DS.Documents.Imaging.Windows).

e GcBitmap is a platform-independent storage for raster images. You can access individual pixels as 32-bit
unsigned integer values in the ARGB format where alpha component is the most significant byte. The Alpha
channel is either pre-multiplied to Red, Green, Blue color channels or it is not pre-multiplied at all. GeBitmap
can be encoded and saved to BMP, PNG, JPEG, GIF, TIFF, WebP or decoded and loaded from the same set of
image formats.

e GrapeCity.Documents.Imaging.Windows.GcWicBitmap which resides in the
DS.Documents.Imaging.Windows package, is very similar to GeBitmap but uses the Windows Imaging
Component (WIC) subsystem for storing a raster image. GcWicBitmap supports various pixel formats and
conversion between the formats. Usually, it works with 32-bit ARGB pixels and pre-multiplied Alpha channel. It
is easy to copy such an image between GcWicBitmap and GeBitmap classes. GcWicBitmap can be saved to
BMP, PNG, JPEG, GIF, TIFF, WebP, JPEGXR and loaded from BMP, PNG, JPEG, GIF, TIFF, WebP, JPEGXR, ICO
image formats. It works faster than GcBitmap but is available only on the Windows platform and lacks some of
the functionalities of GcBitmap such as direct pixel access.

e GrayscaleBitmap is a platform-independent storage for a grayscale image with 8 bits per pixel or an 8-bit
transparency mask. It is four times more compact than GcBitmap. A full-color GeBitmap can be transformed to
grayscale using GrayscaleEffect, and can easily be converted to GrayscaleBitmap. It is possible to save a
GrayscaleBitmap to TIFF and load it from a TIFF file. Working with other image formats requires conversion to
GcBitmap. GrayscaleBitmap is handy to use as a transparency mask to be applied to GeBitmap.

e BilevelBitmap is a compact storage for a bi-level transparency mask or an image containing two colors, such
as black and white. To convert a full-color GcBitmap to BilevelBitmap, you need to apply the GrayscaleEffect,
then apply one of the dithering or thresholding effects to make the image bi-level. The result can be stored as
a BilevelBitmap. It supports saving to TIFF and loading from TIFF. You can read or modify individual pixels in
BilevelBitmap and apply it to GcBitmap as a transparency mask.

® Indexed4bppBitmap and Indexed8bppBitmap are palette-based containers with 4-bit or 8-bit pixels
containing indices of corresponding palette entries. These images can be saved to TIFF and loaded from TIFF.
Indexed8bppBitmap can also be loaded from GIF and both Indexed4bppBitmap and Indexed8bppBitmap can
be saved to GIF. It is easy to convert full-color GeBitmap to an indexed bitmap using one of the dithering
algorithms. The palette entries and pixels are accessible for modifications.

® Image is a lightweight class representing the image in a file, stream, or array of bytes. You can draw the Image
on GcGraphics, convert it to GeBitmap, or save to a MemoryStream in the original format.

Graphics

GrapeCity.Documents.Drawing.GcGraphics is an abstract base class for implementing graphics functionality for
different targets. It allows to draw graphics primitives and text on various media, including GeBitmap, GcWicBitmap,
and GcPdfDocument. The GeGraphics class offers roughly the same functionality as System.Drawing.Graphics class
in WinForms but is platform-independent and provides implementations for different targets.

The GeBitmapGraphics class is derived from GcGraphics and allows to draw on a GeBitmap. Use
GcBitmap.CreateGraphics() method to create an instance of GeBitmapGraphics. Likewise,
GcWicBitmap.CreateGraphics() method creates an instance of GcWicBitmapGraphics that can be used to draw on a
GcWicBitmap. Please note that you need to dispose the graphics objects after use.

Classes like GeBitmapGraphics and GcWicBitmapGraphics obey the universal object model for drawing with
GcGraphics. Internally, both classes are based on more specific implementations targeting the actual media, such as
GcBitmap or GcWicBitmap.

Renderer Classes
The target-specific renderer classes like BitmapRenderer for GecBitmap and

GrapeCity.Documents.DX.Direct2D.RenderTarget for GcWicBitmap provide access to various fine-tuning settings and
to methods not supported by the universal GcGraphics abstract class.

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 17

For example, you must work with BitmapRenderer to update anti aliasing setting or to enable multi threading during
the rendering phase. An instance of BitmapRenderer is available through the GeBitmap.Renderer and
GcBitmapGraphics.Renderer properties. An important feature provided by BitmapRenderer is the capability to work
with lightweight objects called regions, that can be created from simple figures and graphics paths. Regions can be
combined using various logical operations, then filled with brushes or used for clipping.

TIFF Reader/Writer

DsImaging has special support for multi page TIFF format. GeTiffReader allows to read individual images from a multi
page TIFF file or stream. After the proper initialization, the user can access GcTiffReader.Frames property, which is a
list of TiffFrame class instances. TiffFrame is a lightweight reference to the actual image data. It allows to read the
frame image into one of the container classes, such as BilevelBitmap or GeBitmap. GcTiffReader works on any
platform but has some limitations. For example, it does not currently support TIFF-JPEG compression scheme.

The GcWicTiffReader from GrapeCity.Documents.Imaging.Windows namespace in
DS.Documents.Imaging.Windows package is a platform-dependent counterpart for GcTiffReader. It is based on the
Windows Imaging Component subsystem and supports a few color spaces and compression schemes which are
currently not available with platform-independent GcTiffReader. The Frames collection in GeWicTiffReader contains
instances of the WicTiffFrame class. It allows to read frame images into the GcWicBitmap image container.

GcTiffWriter is a platform-independent class making it possible to create a multi page TIFF file or stream from a set
of individual images. You can append images, such as GrayscaleBitmap, Indexed8bppBitmap and so on, to a
GcTiffWriter and specify the detailed settings controlling the frame storage format and metadata using

the TiffFrameSettings class. GcTiffWriter fully supports the Baseline TIFF specification and several TIFF extensions,
such as tiled images, the Deflate compression scheme, associated and unassociated Alpha and other features.
GcWicTiffWriter is a Windows-specific WIC-based class that allows to write GcWicBitmaps to TIFF as separate frames.
It does not offer much functionality beyond GcTiffWriter, but may be handy when drawing images to GcWicBitmap
and saving them as a bunch.

GIF Reader/Writer

Dslmaging has special support for multi-frame GIF format. GeGifReader allows to read individual frames. After the
proper initialization, the user can access GcGifReader.Frames property, which is a list of GifFrame class instances.
GifFrame is a lightweight reference to the actual image data. It allows to read the frame image into one of the
container classes, such as Indexed8bppBitmap or GcBitmap.

GcGifWriter is a platform-independent class making it possible to create a multi-frame GIF file or stream from a set
of individual images. You can append images, such as GrayscaleBitmap, Indexed8bppBitmap and so on, to a
GcGifWriter and specify the detailed settings controlling the frame storage format and the playback (animation)
properties.

DsHtml API Overview

DsHtml is a utility library that renders HTML to PDF file or an image in PNG, JPEG, and WebP format. DsHtml uses a
Chrome or Edge browser (already installed in the current system, or downloaded from a public web site) in headless
mode. Also, it doesn’t matter whether your .NET application is built for x64, x86 or AnyCPU platform target. The
browser is continuously working in a separate process.

The DS.Documents.Html library consists of a platform-independent main package that exposes the HTML rendering
functionality. The main package contains the following namespaces:

Namespaces Description

GrapeCity.Documents.Drawing It provides extension methods and formatting attributes for rendering HTML to
image.

The namespace comprises the following classes:

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 18

® GcBitmapGraphicsExt
¢ HtmlTolmageFormat

GrapeCity.Documents.Html It provides methods for converting HTML to PDF or images and defines
parameters for the PDF or image.

The namespace comprises the following classes:

BrowserFetcher
GcHtmlIBrowser
HtmlPage
ImageOptions
JpegOptions
LaunchOptions
PageOptions
PdfMargins
PdfOptions
PngOptions
TimeOutOptions
WebpOptions

GrapeCity.Documents.Pdf It provides the extension methods for rendering HTML to image and represents
the formatting attributes for rendering HTML to image.

The namespace comprises the following classes:

o GcPdfGraphicsExt
e HtmiToPdfFormat

GrapeCity.Documents.Html.BrowserFetcher

The BrowserFetcher class has two static methods: GetSystemChromePath() and GetSystemEdgePath(). The methods
return the path to an executable file of Chrome or Edge browsers correspondingly. Another option is to download and
install Chromium into a local folder. You can create an instance of BrowserFetcher and pass the information such

as host, platform, revision, and the destination folder, if needed. Then, execute the
BrowserFetcher.GetDownloadedPath() method which downloads Chromium, if required, and returns the path to an
executable file for running the Chromium.

GrapeCity.Documents.Html.GcHtmIBrowser

The GecHtmlIBrowser class provides methods for converting HTML to PDF and images. With path to executable file for
running the Chromium fetched using BrowserFetcher class, we can create an instance of GcHtmIBrowser class which
effectively runs the browser process in the background. GcHtmIBrowser also accepts another parameter of
LaunchOptions type. The LaunchOptions class provides various settings specific to launching the browser.

The class has two important methods: NewPage(Uri uri) and NewPage(string html). Both methods return an
instance of HtmlPage class which represents a browser tab after navigating to the specified web address, file, or the
arbitrary HTML content. The second parameter of PageOptions type provides various properties to be applied to the
new browser page such as username, password for HTTP authentication, disabling JavaScript, lazy loading etc.

Z Note:

® We recommend using Chrome browser with GcHtmIBrowser class as Edge has some differences in the

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 19

implementation of some DevTools features.
® |[tis important to dispose every instance of the GcHtmIBrowser and HtmlPage classes after use.

Grapecity.Documents.Html.HtmIPage

The HtmlPage class represents a browser tab after navigating to the specified web address, file, or the arbitrary HTML
content. The class has methods such as SaveAsPng, SaveAsJpeg, and SaveAsWebp to save the current page as a raster
image of PNG, JPEG, or WebP formats respectively. The first parameter of these methods specifies the destination file
or stream. The second parameter passes the additional options for rendering HTML page as single image, scaling or
cropping the image, or setting the image quality.

The HtmlPage class contains the additional methods that help to interact with HTML page content. For example, you
can obtain the full HTML content of the page using the GetContent method. The SetContent method updates the
HTML markup. You can reload the web page with the Reload method or even execute a script in the browser context
using the EvaluateExpression method. The WaitForNetworkldle method helps with loading asynchronous web content.

GrapeCity.Documents.Html.ImageOptions

ImageOptions is the base abstract class for three specific classes: PngOptions, WebpOptions and JpegOptions. As
compared to PngOptions and WebpOptions classes, the JpegOptions class has an additional
property(CompressionQuality) for providing the JPEG compression quality (from 0% to 100%).

The FullPage property allows to capture the whole scrollable page. While the Clip property specifies the region to
capture (if FullPage is false). Clip and Scale properties work with the result of layout. They allow to extract and scale
some rectangular area and are applied before the rasterization stage. So, any graphics remains crisp with any scale
factor. When exporting HTML to images the Dots Per Inch (DPI) is not set in the resulting image file. It requires some
post-processing in order to set DPI.

GrapeCity.Documents.Drawing.HtmlTolmageFormat
The HtmITolmageFormat class represents the formatting attributes for rendering HTML to GcGraphics as an image.

Also, it helps converting HTML to a GeBitmap.

MaxTopMargin, MaxBottomMargin, MaxLeftMargin, MaxRightMargin properties specify the maximum allowable
margins of the resulting image (larger margins will be trimmed), in pixels. Setting these properties to a negative value
prevents trimming the margins. All those properties are equal to 0 by default which means no margins.

Other properties of HtmITolmageFormat are mapped to the corresponding properties of the
ImageOptions/PageOptions class:

HtmlTolmageFormat Property ImageOptions/PageOptions
Property

DefaultBackgroundColor PageOptions.DefaultBackgroundColor

WindowSize PageOptions.WindowSize

MaxWindowWidth PageOptions.WindowsSize.Width

MaxWindowHeight PageOptions.WindowsSize.Height

FullPage ImageOptions.FullPage

Scale ImageOptions.Scale

Clip ImageOption.Clip

GcBitmapGraphics Extension Methods

DsHtml provides 2 methods that extend GcBitmapGraphics and allow to render an HTML text or page as an image:

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 20

® Draws an HTML string on this GeBitmapGraphics at a specified position.
bool GeBitmapGraphics.DrawHtml(GcHtmIBrowser browser, string html, float x, float y, HtmITolmageFormat
format, out SizeF size, bool loadLazylmages = false)

e Draws an HTML page provided by a URI on this GeBitmapGraphics at a specified position.
bool GeBitmapGraphics.DrawHtml(GcHtmIBrowser browser, Uri htmlUri, float x, float y, HtmITolmageFormat
format, out SizeF size, bool loadLazylmages = false)

Skia API Overview

Namespaces

Namespaces Description

Grapecity.Documents.Imaging.Skia Types used for drawing text and graphics using a highly optimized library
SKIA.

Skia comprises the following main classes:

® GcSkiaBitmap: It represents a bitmap in CPU memory. It works similar to GeBitmap and GcWicBitmap but
internally encapsulates an instance of SKBitmap object from SkiaSharp. GcSkiaBitmap can load images in JPEG,
PNG, and WEBP formats and save images in the same formats. Also, you can convert GcSkiaBitmap to a
GceBitmap or GceSkialmage and vice versa. It is possible to draw text and graphics on GcSkiaBitmap after
executing the CreateGraphics method which returns an instance of the associated GcSkiaGraphics.

e GcSkialmage: It is an immutable image based on SKImage. It looks like a lightweight version of GcSkiaBitmap
which does not support any modifications. You can load and save GcSkialmage to the same formats as
GcSkiaBitmap, and convert it to GeBitmap or GeSkiaBitmap. Both GeSkialmage and GeSkiaBitmap implement
the Image interface and hence can be drawn to any GcGraphics derived class.

® GcSkiaGraphics: It is the main drawing class which is derived from GcGraphics. You can create an instance of
GcSkiaGraphics from either GeSkiaBitmap or directly. When the drawing is done you can simply dispose the
graphics object in case of drawing to GcSkiaBitmap. If the GeSkiaGraphics object was created directly you can
execute ToSkialmage() or ToGcBitmap() methods to get a snapshot of the current drawing. If you draw text to
multiple instances of GcSkiaGraphics please make sure that you created and assigned the same SkiaFontCache
object to the FontCache property of all those instances.

For more information about Skia library, see Render using Skia Library.

Z] Note: In Dsimaging release version 6.0.0, the GcHtmlIRenderer class has been marked obsolete and has been
replaced by the new GcHtmIBrowser class. This is done to avoid GPL or LGPL licensed software that had to be
used in the custom chromium build. To know tips about migration from obsolete GcHtmIRenderer class, see Tips
to Migrate from Obsolete GcHtmIRenderer class.

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 21

Features

This section comprises the features available in DsImaging.

Create Image
Create images and thumbnails in Dsimaging.
Load Image
Load images from file, stream, and byte array in DsImaging.
Save Image
Save images to different formats in DsImaging.
Work with GIF Files
Create a GIF file and read a GIF file to save the frames as separate images in DsImaging.
Work with TIFF Images
Create a multi-framed TIFF, save TIFF frames as separate images, and create tiled images in Dslmaging.
Work with ICO Files
Create an ICO image file and read images from an ICO file in Dslmaging.
Work with SVG Files
Create an SVG image file and render SVG images to PNG formats in DsImaging.
Process Image
Resize, crop, rotate, flip, clear, and combine images, convert an image to indexed image and change its resolution
in Dslmaging.
Apply Effects
Apply dithering, thresholding, gray scaling, and RGB effects on an image in Dsimaging.
Layouts
Place multiple elements on a PDF page or image without having to calculate positions of each element relative to
other ones.
Complex Graphic Layouts
Draw complex graphics, text, and images.
Tables
Create and work with tables easily and straightforwardly without having to think much about the size of table
columns, merged cells, or the layout of rotated text.
Work with Image colors
Adjust color intensity and image histogram levels, work with color channels and color quantization in DsImaging.
Apply Transparency Mask
Set transparency and set the background color for semi-transparent images in DsImaging.
Work with Graphics
Draw and fill shapes, clip region, align image, and apply matrix transformation in DsImaging.
Work with Text
Render and trim text, add watermark text on an image, draw text with anti-aliasing and different font types, add
complex bitmap glyphs, draw text around images, use RTL, and format paragraphs in DsImaging.
Work with EXIF Metadata
Extract and modify the EXIF metadata of an image using DsImaging.

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 22

Create Image

An image is a visual representation of information that can be created using a combination of graphics and text. Dsimaging allows you
to create image(s) programmatically using such graphics, and text. It allows you to create and save images in various image formats
such as, JPEG, PNG, BMP, TIFF, SVG, ICO, GIF and WebP.

Dslmaging provides two main classes, namely GeBitmap and GeBitmapGraphics, that can be used to create image(s). The GeBitmap
class represents an uncompressed in-memory bitmap in 32-bit ARGB format. This class provides CreateGraphics method to create
graphics for GeBitmap. The CreateGraphics method creates an instance of GeBitmapGraphics class, which lets you draw shapes,
graphics, and text to an image. On the other hand, the GcBitmapGraphics class derives from the GeGraphics class and implements a
drawing surface for GeBitmap.

Create Image

To create an image:

1. Initialize the GeBitmap class.

2. Create a drawing surface to draw shapes and render text for an image using CreateGraphics method of the GcBitmap class
which returns an instance of the GeBitmapGraphics class.

3. Draw rounded rectangles and connecting lines in the image using DrawRoundRect and DrawLine methods of the
GcBitmapGraphics class respectively.

4. Apply the background color to the rectangles using FillRoundRect method of the GcBitmapGraphics class.

. Initialize the TextFormat class to define the style used to render text in the image.

6. Add text to the rectangles using DrawString method of the GeBitmapGraphics class.

C#

U

public void CreatelImage (int pixelWidth = 550, int pixelHeight = 350,
bool opaque = true, float dpiX = 96, float dpiY = 96)

//Initialize GcBitmap with the expected height/width
var bmp = new GcBitmap (pixelWidth, pixelHeight, true, dpiX, dpiY);

//Create graphics for GcBitmap
using (var g = bmp.CreateGraphics (Color.LightBlue))
{

// Rounded rectangle's radii:

float rx = 36, ry = 24;

//Define text format used to render text in shapes

var tf = new TextFormat ()

{
Font = Font.FromFile (Path.Combine ("Resources", "Fonts", "times.ttf")),
FontSize = 18

}i

// Using dedicated methods to draw and fill round rectangles:
var recl = new RectangleF (30, 110, 150, 100);

g.FillRoundRect (recl, rx, ry, Color.PaleGreen);
g.DrawRoundRect (recl, rx, ry, Color.Blue, 4);

//Draw string within the rectangle
g.DrawString ("Image", tf, recl, TextAlignment.Center,
ParagraphAlignment.Center, false);

var rec2 = new RectangleF (300, 30, 150, 100);
g.FillRoundRect (rec2, rx, ry, Color.PaleGreen);

g.DrawRoundRect (rec2, rx, ry, Color.Blue, 4);

//Draw string within the rectangle
g.DrawString ("Text", tf, rec2, TextAlignment.Center,

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 23

ParagraphAlignment.Center, false);

var rec3 = new RectangleF (300, 230, 220, 100);
g.FillRoundRect (rec3, rx, ry, Color.PaleGreen);
g.DrawRoundRect (rec3, rx, ry, Color.Blue, 4);

//Draw string within the rectangle
g.DrawString ("Graphics", tf, rec3, TextAlignment.Center,
ParagraphAlignment.Center, false);

//Draw lines between the rectangles
g.DrawLine (183, 160, 299, 80, Color.Red, 5, DashStyle.Solid);
g.DrawLine (183, 160, 299, 280, Color.Red, 5, DashStyle.Solid);

//Save GcBitmap to jpeg format
bmp.SaveAsJpeg ("Image.jpeg") ;

Back to Top

Create SVG Image using Code

To create an SVG image using code:

. Create a new SVG document by creating an instance of GeSvgDocument.

. Create an instance of SvgPathBuilder class. This class provides methods to execute the path commands.

. Define the path to draw the outline of shape to be drawn on SVG using methods such as AddMoveTo and AddCurveTo.
. Add these elements into root collection of 'svg' element using the Add method.

U WN =

for drawing the path.
. Define other properties of each path such as, Fill, Stroke etc.
. Save the document as SVG by using Save method of the GeSvgDocument class.
8. To save the SVG as image, use the DrawSvg method of the GeBitmapGraphics class.

~N o

C#

public static GcSvgDocument DrawCarrot ()
{
// Create a new SVG document
var doc = new GcSvgDocument () ;
var svg = doc.RootSvg;
svg.ViewBox = new SvgViewBox (0, 0, 313.666f, 164.519f);

//Create an instance of SvgPathBuilder class.
var pb = new SvgPathBuilder();

//Define the path

pb.AddMoveTo (false, 29.649f, 9.683f);

pb.AddCurveTo (true, -2.389f, -0.468f, -4.797f, 2.57f, -6.137f, 5.697f);
pb.AddCurveTo (true, 2.075f, -2.255f, 3.596f, -1.051f, 4.915f, -0.675f);
pb.AddCurveTo (true, -2.122f, 2.795f, -4f, 5.877f, -7.746f, 5.568f);
pb.AddCurveTo (true, 2.384f, -6.014f, 2.963f, -12.977f, 0.394f, -17.78f);
pb.AddCurveTo (true, -1.296f, 2.591f, -1.854f, 6.054f, -5.204f, 7.395f);
pb.AddCurveTo (true, 3.575f, 2.455f, 0.986f, 7.637f, 1.208f, 11.437f);
pb.AddCurveTo (false, 11.967f, 21.17f, 6.428f, 16.391f, 9.058f, 10.67f);
pb.AddCurveTo (true, -3.922f, 8.312f, -2.715f, 19.745f, 4.363f, 22.224f);
pb.AddCurveTo (true, -3.86f, 4.265f, -2.204f, 10.343f, 0.209f, 13.781f);
pb.AddCurveTo (true, -0.96f, 1.808f, -1.83f, 2.546f, -3.774f, 3.195f);
pb.AddCurveTo (true, 3.376f, 1.628f, 6.612f, 4.866f, 11.326f, 3.366f);

© 2023 MESCIUS inc. All rights reserved.

. Provide the SvgPathData using ToPathData method of the SvgPathBuilder class which represents sequence of instructions

Document Solutions for Imaging

pb.AddCurveTo -15.
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo

(true,
(
(
(
(
(
(
(
(
pb.AddCurveTo (
(
(
(
(
(
(
(
(
(

-1.005f,
3.216f,
-1.583f%,
1.877f,
-0.406f%,
2.834f,
-0.893fF,

5.359f,

2.345f,
0.267f,
2.84f,
-3.088f,
4.826f,
-4.894f,
4.245f,
0.445¢f,

-12.389f, 9.499f,
14.492f, -2.308f,
1.431f, 2.28f, 2.86f,

3.978f£, -2.374f,

-2.12f£, 9.27f,

6.922f, -5.367f,

-3.146f, 8.646f,
11.123f, -3.934f,
12.688f, 3.209f, 28.763f, -1.932f,
1.024f£, 0.625f, 1.761f, -4.98f, 1.023f,

72.823f, 55.357f, 69.273f, 68.83f,
-0.492f, -0.584f, 1.563f, -5.81f, 1f,
-1.048f, -3.596f, -3.799f, -6.249f, -7.
-2.191f, 0.361f, -5.448f, 0.631f,
2.923f, -5.961f, 9.848f, -4.849f,
-4.759f, 2.039f, -7.864f, -2.808f,
1.63f, -3.377f, 4.557f, -2.863f,
-3.817f, -2.746f, -9.295f, -5.091f,

33.228f, 18.615f, 32.064f, 13.119f,

true,
true,
true,
true,
true,
true,
true,
true,
true,
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo (false,

false,
true,
true,
true,
true,
true, -12.
true,

true,

//Add elements into Children collection of SVG
svg.Children.Add (new SvgPathElement ()
{

FillRule SvgFillRule.EvenOdd,
Fill new SvgPaint (Color.FromArgb (0x43,
PathData pb.ToPathData(),

0x95, 0x39)),

1)
pb.Reset () ;
pb.AddMoveTo (false,
pb.AddCurveTo (true,
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
(
(
(
(
(
(
(
(
(
(
(
(
(

29.649f,
-2.389f,
2.075f,
-2.122f%,
2.384f,

9.683f);

-0.468f,
-2.255f,

2.795¢%,
-6.014f,

-4.797£, 2.57f,
3.596f, -1.051f,
-4f, 5.877f£, -7.746f,
2.963f, -12.977f,
-1.296f, 2.591f, -1.854f, 6.054f,
3.575f, 2.455f, 0.986f, 7.637f, 1.208f,

11.967£, 21.17f, 6.428f, 16.391f,
-3.922f, 8.312f, -2.715f, 19.745f,
-3.86f, 4.265f, -2.204f, 10.343f,
-0.96f, 1.808f, -1.83f, 2.546f,
3.376f, 1.628f, 6.612f, 4.866f,
-1.005f, 2.345f, -12.389f, 9.499f,
3.216f, 0.267f, 14.492f, -2.308f,
-1.583f, 2.84f, 1.431f, 2.28f, 2.86f,
1.877f£, -3.088f, 3.978f, -2.374f,
-0.406f, 4.826f, -2.12f, 9.27f,
2.834f, -4.894f, 6.922f, -5.367f,
-0.893f, 4.245f, -3.146f, 8.646f,
5.359f, 0.445f, 11.123f, -3.934f,
12.688f, 3.209f, 28.763f, -1.932f,
1.024f, 0.625f, 1.761f, -4.98f, 1.023f,

72.823f, 55.357f, 69.273f, 68.83f,
-0.492f, -0.584f, 1.563f, -5.81f, 1f,
-1.048f, -3.596f, -3.799f, -6.249f, -7.
-2.191f, 0.361f, -5.448f, 0.631f,
2.923f, -5.961f, 9.848f, -4.849f,
-4.759f, 2.039f, -7.864f, -2.808f,
1.63f, -3.377£, 4.557f, -2.863f,
-3.817f, -2.746f, -9.295f, -5.0091f,

true,
true,
true,
true,
true,
false,
true,
true,
true,
true,
true, -15.
true,
true,
true,
true,
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo

true,
true,
true,
true,
true,
false,
true,
true,
true,
true,
true, -12.
true,
true,

© 2023 MESCIUS inc. All rights reserved.

16.903f,
4.56f);
5.677f,
-5.447f,
10.474f,
-7.077f£,
13.509f,
39.894f,

52.
-8.825f);

-7.84f,
12.28f,

6.786f,
-14.56f,
29.649f,

-6.137f%,
4.915f,

0.394f,
-5.204f,

9.058¢,
4.363f,
0.209f,
-3.774f%,
11.326f,

16.903f,
4.56f);
5.677f,
-5.447¢%,
10.474f1£,
-7.077f£,
13.509%,
39.894f,

52.

-7.84f,

12.28f,

6.786f,
-14.56f,

24

10.35f);
-5.349f);

16f,

-3.311f);
13.582f);
-5.879f
10.479fF
-9.944f

7.084f

-5.852f);
651f, 54.498f);

’
’

’

)
)
)
) ;

’

594f, -6.027f);
0.159f);
-11.3961);
329f, -1.018f);
-3.755f);
-0.129f);
9.683f);

5.697f);
-0.675f);
5.568f) ;
-17.78f);
7.395f);
.437f);
10.67£) ;
22.224f);
13.781f);
3.195f);
3.366f);
lef, 10.35f);
-5.349f);

11

-3.311f);
13.582f);
-5.879f
10.479f
-9.944f

7.084f

-5.852f);
651f, 54.498f);

’
’

’

)
)
)
) ;

’

-8.825f);

594f, -6.027f);
0.159f);
-11.3961);
329f, -1.018f);
-3.755f);
-0.129f);

Document Solutions for Imaging

pb.AddCurveTo (false, 33.228f, 18.615f, 32.064f, 13.119f,

pb.AddClosePath() ;
//Add elements into Children collection of SVG
svg.Children.Add (new SvgPathElement ()
{
Fill = SvgPaint.None,
Stroke = new SvgPaint (Color.Black),
StrokeWidth = new SvgLength(2.292f),
StrokeMiterLimit = 14.3f,
PathData = pb.ToPathData(),
1)

pb.Reset () ;
pb.AddMoveTo (false, 85.989f, 101.047f);
pb.AddCurveTo (true, 0f, Of,
pb.AddCurveTo (true, 7.828f,
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo

true, 8.248f,
true, 0f, Of,
true, 10.871f, 6.353f, 20.142f, 2.163f,

true, 10.747f, 1.886f, 25.801f, 5.607f,

(
(
(
(
(
(
(
(
(
(
(
(
(
(true, -8.079f, -4.14f, -18.215f, -7.4¢6f,
(
(
(
(
(
(

29.649f, 9.683f);

3.202f, 3.67f, 8.536f, 4.673f);

1.472£, 17.269f, 0.936f, 17.269f, 0.936f);
true, 0f, 0f, 2.546f, 5.166f, 10.787f, 7.338f);

2.168f, 17.802f, 0.484f, 17.802f, 0.484f);

8.781f, 1.722f, 19.654f, 8.074f);
20.142f, 2.163f);
true, 0f, 0f, 1.722f, 3.118f, 14.11f, 9.102f);
true, 12.39f, 5.982f, 14.152f, 2.658f, 28.387f, 4.339f);
true, 14.232f, 1.672f, 19.36f, 5.568f, 30.108f, 7.449f);
25.801f, 5.607f);
true, 0f, 0f, 4.925f, 0.409f, 12.313f, 6.967f);
true, 7.381f, 6.564f, 18.453f, 4.506f, 18.453f, 4.506f);
true, 0f, 0f, -10.869f, -6.352f, -15.467f,
true, -4.594f, -4.342f, -16.901f, -11.309f, -24.984f, -15.448f);
-30.233f, -11.924f);
true, -12.018f, -4.468f, -6.934f, -6.029f, ;
true, -16.695f, -7.822f, -13.662f, -8.565f, -28.347f, -10.776f);
true, -14.686f, -2.208f, -6.444f, -11.933f, -23.917f, -16.356f)
true, -17.479f, -4.423f, -11.037f, -4.382f, -26.016f, -9.093f);
true, -14.97f, -4.715f, -10.638f, -10.104f, -26.665f, -13.116f);
true, -14.149f, -2.66f, -21.318f, 0.468f,

-10.702f) ;

-23.632f, -13.855f)

’

-27.722f, 11.581f);

pb.AddCurveTo (false, 73.104f, 89.075f, 85.989f, 101.047f, 85.989f, 101.047f);

// Add elements into Children collection of SVG
svg.Children.Add (new SvgPathElement ()

{
FillRule = SvgFillRule.EvenOdd,

Fill = new SvgPaint (Color.FromArgb (0xFF, 0xC2, 0x22)),

PathData = pb.ToPathData(),
1)

pb.Reset ()
pb.AddMoveTo (false, 221.771f, 126.738f);

pb.AddCurveTo (true, 0f, 0f, 1.874f, -4.211f, 4.215f, -6.087f);

pb.AddCurveTo (true, 2.347f, -1.868f, 2.812f, -2.339f,
pb.AddMoveTo (false, 147.11f, 105.122f);
pb.AddCurveTo (true, 0f, 0f, 0.882f, -11.047f, 6.765f,
pb.AddCurveTo (true, 5.879f, -4.745f, 10.882f, -5.568f,
pb.AddMoveTo (false, 125.391f, 86.008f);

2.812f, -2.339f);

-15.793f) ;
10.882f, -5.568f);

pb.AddCurveTo (true, 0f, 0f, 2.797f, -6.289f, 6.291f, -9.081f);
pb.AddCurveTo (true, 3.495f, -2.791f, 4.194f, -3.49f, 4.194f, -3.49f);

pb.AddMoveTo (false, 181.153f, 124.8f);
pb.AddCurveTo (true, 0f, 0f, -1.206f, -4.014f, -0.709f,

-6.671f);

pb.AddCurveTo (true, 0.493f, -2.66f, 0.539f, -3.256f, 0.539f, -3.256f);

pb.AddMoveTo (false, 111.704f, 107.641f);
pb.AddCurveTo (true, 0f, 0f, -1.935f, -6.604f, -1.076f,

© 2023 MESCIUS inc. All rights reserved.

-10.991f);

25

Document Solutions for Imaging

pb.AddCurveTo (true, 0.862f, -4.389f, 0.942f, -5.376f, 0.942f, -5.376f);
pb.AddMoveTo (false, 85.989f, 101.047f);

pb.AddCurveTo (true, 0f, 0f, 3.202f, 3.67f, 8.536f, 4.673f);

pb.AddCurveTo (true, 7.828f, 1.472f, 17.269f, 0.936f, 17.269f, 0.936f);
pb.AddCurveTo (true, 0f, 0f, 2.546f, 5.166f, 10.787f, 7.338f);

pb.AddCurveTo (true, 8.248f, 2.168f, 17.802f, 0.484f, 17.802f, 0.484f);
pb.AddCurveTo (true, 0f, 0f, 8.781f, 1.722f, 19.654f, 8.074f);

pb.AddCurveTo (true, 10.871f, 6.353f, 20.142f, 2.163f, 20.142f, 2.163f);
pb.AddCurveTo (true, 0f, 0f, 1.722f, 3.118f, 14.11f, 9.102f);

pb.AddCurveTo (true, 12.39f, 5.982f, 14.152f, 2.658f, 28.387f, 4.339f);
pb.AddCurveTo (true, 14.232f, 1.672f, 19.36f, 5.568f, 30.108f, 7.449f);
pb.AddCurveTo (true, 10.747f, 1.886f, 25.801f, 5.607f, 25.801f, 5.607f);
pb.AddCurveTo (true, 0f, 0f, 4.925f, 0.409f, 12.313f, 6.967f);

pb.AddCurveTo (true, 7.381f, 6.564f, 18.453f, 4.506f, 18.453f, 4.506f);
pb.AddCurveTo (true, 0f, 0f, -10.869f, -6.352f, -15.467f, -10.702f);
pb.AddCurveTo (true, -4.594f, -4.342f, -16.901f, -11.309f, -24.984f, -15.448f);
pb.AddCurveTo (true, -8.079f, -4.14f, -18.215f, -7.46f, -30.233f, -11.924f);
pb.AddCurveTo (true, -12.018f, -4.468f, -6.934f, -6.029f, -23.632f, -13.855f);
pb.AddCurveTo (true, -16.695f, -7.822f, -13.662f, -8.565f, -28.347f, -10.776f);
pb.AddCurveTo (true, -14.686f, -2.208f, -6.444f, -11.933f, -23.917f, -16.356f);
pb.AddCurveTo (true, -17.479f, -4.423f, -11.037f, -4.382f, -26.016f, -9.093f);
pb.AddCurveTo (true, -14.97f, -4.715f, -10.638f, -10.104f, -26.665f, -13.116f);
pb.AddCurveTo (true, -14.149f, -2.66f, -21.318f, 0.468f, -27.722f, 11.581f);
pb.AddCurveTo (false, 73.104f, 89.075f, 85.989f, 101.047f, 85.989f, 101.047f);
pb.AddClosePath() ;

//Add elements into Children collection of SVG

svg.Children.Add (new SvgPathElement ()
{

Fill =
Stroke new SvgPaint (Color.Black),
StrokeWidth new SvgLength (3.056f),
StrokeMiterLimit 11.5f,

PathData = pb.ToPathData(),

SvgPaint.None,

1)

//Save the document as svg

doc.Save ("demo.svg") ;

return doc;
}
public static void CreateAndRenderSvgTolImage ()
{

170 * factor,

int factor = 2;
using (var bmp = new GcBitmap (320 * factor,
using (var gr = bmp.CreateGraphics (Color.White))

{

gr.DrawSvg (DrawCarrot (), PointF.Empty);

// Save the SVG as image
bmp.SaveAsPng ("carrot.png") ;

Console.WritelLine ("CreateAndRenderSvgToImage") ;

Create Thumbnail

true,

96f * factor,

26

96f * factor))

Dslmaging allows you to create thumbnails of images using Resize method of the GeBitmap class. The Resize method takes
InterpolationMode as a parameter to generate the transformed image which is stored as a GecBitmap instance. The interpolation

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 27

parameter can be set using the InterpolationMode enumeration which specifies the algorithm used to scale images. This affects the
way an image stretches or shrinks.

Original Image Thumbnail

To create a thumbnail of an image:

1. Load an image in a GeBitmap instance.
2. Determine the height and width for the thumbnail.
3. Invoke the Resize method of GcBitmap class with thumbnail height, width, and interpolation mode as its parameters.

C#

public void CreateThumbnail (string origImagePath, string thumbImagePath, int thumbWidth, int
thumbHeight)
{
using (var origBmp = new GcBitmap (origImagePath, null))
using (var thumbBmp = new GcBitmap (thumbWidth, thumbHeight, true))
{
thumbBmp.Clear (Color.White) ;
float k = Math.Min((float)thumbWidth / origBmp.PixelWidth, (float)thumbHeight /
origBmp.PixelHeight) ;

var interpolationMode = k < 0.5f ? InterpolationMode.Downscale
InterpolationMode.Cubic;
int bmpWidth = (int) (k * origBmp.PixelWidth + 0.5f);

int bmpHeight = (int) (k * origBmp.PixelHeight + 0.5f);
using (var bmp = origBmp.Resize (bmpWidth, bmpHeight, interpolationMode))
{
thumbBmp.BitBlt (bmp, (thumbWidth - bmpWidth) / 2, thumbHeight - bmpHeight) ;

thumbBmp . SaveAsJpeg (thumbImagePath) ;

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 28

For more information about creating images using Dslmaging, see DsImaging sample browser.

Z Note: For rendering large or complex text and graphics, you can use Skia library. For more information about the library and its
usage, see Render using Skia Library.

© 2023 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-imaging/demos/basics/images/bmp-transforms/code-cs

Document Solutions for Imaging 29

Load Image

Dslmaging allows you to load images using Load method of the GcBitmap class. You can load images from file,
stream, and byte arrays.

Purpose Method
Load image from a file Load (string, System.Drawing.Rectangle?)

Load image from a Load (System.lO.Stream,
stream System.Drawing.Rectangle?)

Load image from a byte Load (byte[], System.Drawing.Rectangle?)
array

Load Image from File

To load an image from file, get the image path, store it in a variable and load the file in GeBitmap object using the
Load method with the variable as its parameter.

C#

public void LoadSaveFile ()
{
//Get the image path
var origImagePath = Path.Combine ("Resources", "Images",
"color-woman-postits.jpg");

//Initialize GcBitmap
GecBitmap fileBmp = new GcBitmap () ;

//Load image from file
fileBmp.Load (origImagePath) ;

//Add title to image
using (var g = fileBmp.CreateGraphics/())

{

var rc new RectangleF (512, 0, 100, 100);
var tf = new TextFormat
{
Font = Font.FromFile (Path.Combine ("Resources", "Fonts",
"times.ttf")),
FontSize = 40
}i
g.DrawString ("Hello World!", tf, rc, TextAlignment.Center,
ParagraphAlignment.Center, false);

//Save image to file
fileBmp.SaveAsJpeg ("color-woman-postits—-file.jpg");

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

Back to Top

Load Image from Stream

To load an image from stream, instantiate the FileStream class to read the image in the stream and load the file in

GcBitmap object using the Load method with FileStream object as its parameter.

C#

public void LoadSaveStream/()
{
//Get the image path
var origImagePath = Path.Combine ("Resources", "Images",

"color-woman-postits.jpg");

//Initialize GcBitmap
GcBitmap streamBmp = new GcBitmap () ;

//Load image from stream

FileStream stm = new FileStream(origImagePath, FileMode.Open);
streamBmp.Load (stm) ;

stm.Close () ;

//Add title to image
using (var g = streamBmp.CreateGraphics())

{
var rc = new RectangleF (512, 0, 100, 100);

var tf = new TextFormat

{

Font = Font.FromFile (Path.Combine ("Resources", "Fonts",
"times.ttf")),
FontSize = 40
}i
g.DrawString ("Hello World!", tf, rc, TextAlignment.Center,
ParagraphAlignment.Center, false);

//Save GcBitmap to stream
MemoryStream outStream = new MemoryStream() ;
streamBmp.SaveAsJpeg (outStream) ;

}
Back to Top

Load Image from Byte Array

To load an image from byte array, you need to read all the bytes of an image using the ReadAllBytes method and

load the created byte array in GecBitmap using the Load method.

C#

public void LoadSaveByteArray ()
{

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 31

//Get the image path
var origImagePath = Path.Combine ("Resources", "Images",
"color-woman-postits.jpg");

//Initialize GcBitmap
GcBitmap byteArrayBmp = new GcBitmap (),

//Load image from byte array
byte[] imgArray = File.ReadAllBytes (origImagePath) ;
byteArrayBmp.Load (imgArray) ;

//Add title to image
using (var g = byteArrayBmp.CreateGraphics())
{

var rc = new RectangleF (512, 0, 100, 100);

var tf = new TextFormat
{
Font = Font.FromFile (Path.Combine ("Resources", "Fonts",
"times.ttf")),
FontSize = 40
bi
g.DrawString ("Hello World!", tf, rc, TextAlignment.Center,
ParagraphAlignment.Center, false);

//Save image to file
byteArrayBmp.SaveAsJpeg ("color-woman-postits-byteArray.jpg");
}

[rE| Note: For rendering large or complex text and graphics, you can use Skia library. For more information about the
library and its usage, see Render using Skia Library.

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 32

Save Image

DsImaging allows you to save images in various formats, such as JPEG, PNG, BMP etc. Each of these formats have a
dedicated method as shown below:

Format Method

JPEG (with specified quality) SaveAsJpeg

PNG SaveAsPng

BMP SaveAsBmp

TIFF SaveAsTiff

GIF SaveAsGif

SVG ToSvgDocument (For more
information, see Work with SVG
Files)

ICO Save (For more information,

see Work with ICO Files)

WebP SaveAsWebP (For more
information, see Work with WebP
Files)

Each of these methods has two overloads, one saves the image in a file and other saves the image in a stream.

C#
// Save image

bmp.SaveAsJpeg ("color-postits.jpg") ;

// Save image using stream
bmp.SaveAsJdpeg (stream) ;

| Note: For rendering large or complex text and graphics, you can use Skia library. For more information about the
library and its usage, see Render using Skia Library.

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 33

Work with GIF files

Graphic Interchange Format (GIF) is a commonly used web image format to create animated graphics. GIF file is
created by combining multiple images into a single file. Unlike the JPEG image format, GIF file uses lossless data
compression technique to reduce the file size without degrading the visual quality.The image data in a GIF file is
stored using indexed color which implies that a standard GIF image can include a maximum of 256 colors.

Apart from reading and creating a GIF file, Dslmaging provides control over various features of GIF files. It allows you
to set comments for a GIF file. The comment string can be encoded in various formats supported by DsIimaging. While
creating a multiframed GIF file by appending frames, you can use either an indexed image, bitmap, bilevel bitmap or a
grayscale image. It also lets you set the number of iterations that should be executed by the animated GIF file.

The below image represents the creation of a GIF file using different frames and the extraction of different frames as
images while reading a GIF file.

Creating a
GIF file ~

Reading a
GIF file

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 34

Reading Frames from a GIF File

Dslmaging provides GeGifReader class that helps you to read a GIF file and save the frames as separate images. The
constructor of this class accepts the GIF file name or stream as a parameter and loads the contents of GIF file. The
information about the individual GIF frames is collected in the Frames property of the GcGifReader class. While
extracting the frames, you can process them in a number of ways, store them in different formats or add them as
input frames to GcGifWriter to create a GIF.

To read a multiframe GIF file and save its frames as separate images:

1. Initialize the GeGifReader class and pass the GIF file name as a parameter to the constructor.

2. Access the GIF frames from the GIF file using Frames property of the GcGifReader class.

3. Load the frame using ToGcBitmap method of GcWicBitmap and save it as an image using the SaveAsJpeg
method of GcBitmap class.

C#
//Read frames form the GIF image

GcGifReader reader = new GceGifReader ("Images/radar.gif");

var frames = reader.Frames;

using (var bmp = new GcBitmap())

{
//Saving GIF frames as individual images

for (var i = 0; 1 < frames.Count; i++)

{
frames[i].ToGcBitmap (bmp, 1 - 1);
bmp.SaveAsJpeqg ("Images/Frames/Radar/fr" + (i + 1).ToString() + ".jpg");

Back to Top

Creating a GIF File

The Dslmaging library provides GeGifWriter class which helps you to create a GIF file using multiple images.
The AppendFrame method of GeGifWriter class appends an image as a frame to the GIF file. You can invoke this
method multiple time to append multiple frames and create a GIF file.

To create a GIF file using multiple images:
1. Initialize the GeGifWriter class and pass the GIF file name as a parameter to the constructor.

2. Instantiate GeBitmap class to load the images which will serve as frames for the multiframe GIF file.
3. Invoke the AppendFrame method of GcGifWriter class to append frames to the GIF file.

C#

//Creating GIF image using set of images
GcGifWriter writer = new GeGifWriter ("Images/newradar.gif™);

GcBitmap bmp = new GcBitmap();
bmp.Load ("Images/Frames/frl.jpg") ;

writer.AppendFrame (bmp, 255,0,0,GifDisposalMethod.DoNotDispose, 20, false) ;

bmp.Load ("Images/Frames/fr2.jpg") ;
writer.AppendFrame (bmp, 255, 0, 0, GifDisposalMethod.DoNotDispose, 20, false);

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 35

bmp.Load ("Images/Frames/fr3.jpg") ;
writer.AppendFrame (bmp, 255, 0, 0, GifDisposalMethod.DoNotDispose, 20, false);

bmp.Load ("Images/Frames/frd.jpg") ;
writer.AppendFrame (bmp, 255, 0, 0, GifDisposalMethod.DoNotDispose, 20, false);

Back to Top

For more information about working with GIF images using Dslmaging, see DsImaging sample browser.

© 2023 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-imaging/demos/basics/gif/make-gif/code-cs

Document Solutions for Imaging 36

Work with TIFF Images

Tagged Image File Format (TIFF) is a widely used file format for storing raster images. A primary goal of TIFF is to
provide a rich environment within which applications can exchange image data. TIFF can describe bi-level, grayscale,
palette-color, and full-color images with optional transparency and Exif metadata. It supports several compression
schemes that allow developers to choose the best space or time tradeoff for their applications. In general, TIFF can
store lossless and lossy (JPEG-based) image data. Dslmaging supports only lossless compression for TIFF frames. PNG
format usually offers slightly better compression ratio, but it is limited to one image per file. TIFF can store multiple
images in the same file. For more info see the Adobe TIFF specifications.

Reading Images from TIFF

Dslmaging provides two main classes that help extracting images from a multi-frame TIFF: GcTiffReader

and TiffFrame. To read an image from a single-frame TIFF, just load the image into a GcBitmap as other supported
image formats, like JPEG or BMP. Also, when a TIFF file contains JPEG-based frames, you can use the platform-
dependent GcWicTiffReader and WicTiffFrame classes from GrapeCity.Documents.Imaging.Windows namespace.
However, there is no such option available for non-Windows systems.

GcTiffReader accepts a file name or stream as the constructor argument and immediately loads the contents of TIFF
without loading the actual image data. The information about TIFF frames is collected in the Frames property of the
GcTiffReader class. The list contains objects of type TiffFrame providing the detailed information about the specific
frame, including its size, format, and various metadata. Also, TiffFrame allows to read the frame image into the regular
image storing classes of DsImaging, such as GcBitmap, BilevelBitmap, GrayscaleBitmap, and palette-based bitmaps.
These images can be processed in a number of ways, stored in different formats or added as frames to a GcTiffWriter.

To read a multiframe TIFF and save its frames as separate images:

1. Initialize the GcTiffReader class and pass the multi frame TIFF as a parameter to the constructor.
2. Access the list of frames from the TIFF image using Frames property of the GcTiffReader class.

3. Invoke the ReadAsGcBitmap method to get the frame image as GcBitmap object.

4. Save the image to a file in PNG format using SaveAsPng method.

C#
//Initialize TiffReader class and load the Tiff image

string tiffFilePath = Path.Combine ("Resources", "Images", "Test.tif");
GcTiffReader tr = new GcTiffReader (tiffFilePath);

string pngName = "FrameImage";

//Save separate images for each Tiff frame
for (int i = 0; 1 < tr.Frames.Count; i++)
{
using (var bmp = tr.Frames[i].ReadAsGcBitmap())
{
bmp.SaveAsPng($"{pngName}_{ (1 + 1)}.png");

Back to Top

Creating a Multiframe TIFF

To create a single-frame TIFF, you can use the GeBitmap.SaveAsTiff() method which accepts either file path or the
output stream as an argument. Now, you can create a multi-frame TIFF by creating an instance of the GcTiffWriter

© 2023 MESCIUS inc. All rights reserved.

https://www.adobe.io/content/dam/udp/en/open/standards/tiff/TIFF6.pdf

Document Solutions for Imaging 37

class with a specified file path or stream. Then, you can add various bitmaps to the output TIFF using

the AppendFrame method of GcTiffWriter. Further, you can pass an instance of the TiffFrameSettings class to the
GcBitmap.SaveAsTiff() method as well as to the AppendFrame() method. Also, DefaultFrameSettings property of the
GcTiffWriter class allows you to create the common settings for all the frames. For more information on TIFF frame
settings, see TIFF Configuration Options.

To create a multiframe TIFF by combining four images:

Create an instance of the GcBitmap class to load the images which will serve as frames for the multiframe TIFF.
Initialize the GcTiffWriter class by passing the output file name as its parameter.

Invoke the AppendFrame method of GcTiffWriter class for each frame to write frames to the output stream.
Optionally, set the compression and orientation of the frame using Compression and Orientation properties
of the TiffFrameSettings class through TiffCompression and TiffOrientation enumerations respectively.

C#

A=

string imagePath = Path.Combine ("Resources", "Images", "MultiFrameTiff.tif");

//Initialize TiffWriter class to generate multi-frame TIFF
GecTiffWriter tiffWriter = new GecTiffWriter (imagePath);

//Define Tiff frame settings

TiffFrameSettings settings = new TiffFrameSettings();
settings.Compression = TiffCompression.PackBits;
settings.Orientation = TiffOrientation.TopLeft;

//Initialize GcBitmap to load images for frames

GcBitmap origbmp = new GcBitmap ()

//Load image and append first frame

imagePath = Path.Combine ("Resources", "Images", "TiffFrames", "Imgl.png");
settings.ImageDescription = "Framel";

origbmp.Load (imagePath) ;

tiffWriter.AppendFrame (origbmp, settings);

//Load image and append second frame

imagePath = Path.Combine ("Resources", "Images", "TiffFrames", "Img2.png");
origbmp.Load (imagePath) ;

settings.ImageDescription = "Frame2";

tiffWriter.AppendFrame (origbmp, settings);

tiffWriter.Dispose()
Back to Top

TIFF Configuration Options

Dslmaging gives full control over the format and settings of an output TIFF frame with the TiffFrameSettings class.
The frame settings include various metadata, such as the image description, the date of image creation and so on.
Also, there are some important properties controlling the compression scheme of the frame image. For the best
compression of a full-color image, you can set the Compression property to TiffCompressioin.Deflate or LZW.

The Differencing and Planar properties also can help in better compression results. In the case of bilevel and
grayscale images, the other compression schemes can also fit well. With GeBitmap it is possible to shrink the color
channels (Red, Green, Blue, Alpha) from 8 bits to some lower value using one of the error-diffusion algorithms (see
GcBitmap.ShrinkARGBFormat and GrayscaleBitmap.ShrinkPixelFormat methods). Then, you can save such an image

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 38

as TIFF frame specifying the exact number of bits per channel using the BitsPer[Color]Channel or BitsPerGrayscale
properties of TiffframeSettings. Before doing that please make sure that, just like GeTiffReader, your TIFF viewer
application supports TIFF frames with variable bits per channel.

Creating Tiled image

Tiled TIFF frames are, generally preferred over stripped frames in case of large images as well as for images where the
color areas change more frequently in the horizontal direction than in vertical. For more information, see “Tiled
Images” section in the TIFF specification. In DsImaging, you can create tiled images by setting the TileWidth

and TileHeight properties to some positive values. Please note that it might affect the compression ratio.

To create a tiled TIFF image consisting of four frames:

1.

Create an instance of the GeBitmap class to load the images which will serve as frames for the multiframe TIFF.

2. Initialize the GcTiffWriter class by passing the output file name as its parameter.

3. Also, set the tile height and tile width using the TileHeight and TileWidth properties of the TiffframeSettings
class.

4. Invoke the AppendFrame method of GcTiffWriter class for each frame to write frames to the output stream.
C#
string imagePath = Path.Combine ("Resources", "Images", "TiledTiff.tif");
//Initialize TiffWriter class to generate multi-frame TIFF
GecTiffWriter tiffWriter = new GcTiffWriter (imagePath);
//Define Tiff frame settings
TiffFrameSettings settings = new TiffFrameSettings();
settings.TileHeight = 200;
settings.TileWidth = 200;
//Initialize GcBitmap to load images for frames
GcBitmap origbmp = new GcBitmap ()
//Load image and append first frame
imagePath = Path.Combine ("Resources", "Images", "TiffFrames", "Imgl.png");
settings.ImageDescription = "Framel";
origbmp.Load (imagePath) ;
tiffWriter.AppendFrame (origbmp, settings);
//Load image and append second frame
imagePath = Path.Combine ("Resources", "Images", "TiffFrames", "Img2.png");
origbmp.Load (imagePath) ;
settings.ImageDescription = "Frame2";
tiffWriter.AppendFrame (origbmp, settings);
tiffWriter.Dispose()

Back to Top

For more information about working with TIFF images using Dslmaging, see DsImaging sample browser.

© 2023 MESCIUS inc. All rights reserved.

https://www.adobe.io/content/dam/udp/en/open/standards/tiff/TIFF6.pdf
https://www.adobe.io/content/dam/udp/en/open/standards/tiff/TIFF6.pdf
https://developer.mescius.com/documents-api-imaging/demos/basics/tiff/extract-frames/code-cs

Document Solutions for Imaging 39

Work with ICO files

Dslmaging supports ICO file format which is a widely used image file format for computer icons. It stores a collection
of small images of different sizes and color sets. The images can be saved in ICO file format by using Gclco class. You
can work with different frames of an ICO file by using the methods of IcoFrame class.

You can also load and save icons in various encodings by using lcoFrameEncoding enumeration which sets the
encoding of an ICO frame image. For example, a frame can be stored in PNG format or as indexed image with color
palette and transparency mask.

Create an ICO File

DsImaging lets you create the frames of an ICO image file from scratch or load from an existing ICO file. These frames
can also be converted to GeBitmap or created from existing GeBitmap instances. The whole collection can then be
saved to an ICO file. The frames in a multiframe ICO image file can be appended, removed, modified, or reordered.

To create an ICO file from a PNG image:
1. Instantiate GeBitmap class and load the PNG file in GeBitmap instance.

2. Initialize Gcelco class and add the bitmap instance as an ICO frame.
3. Save the ICO image file using Save method.

C#

//Load a png file
var srcPath = System.IO.Path.Combine ("gcd-hex-logo.png");
var srcBmp = new GcBitmap (srcPath);

//Resize the image
var bmp256 = srcBmp.Resize (256, 256);

var ico = new GcIco();
//Add ico file frame
ico.Frames.Add (new IcoFrame (bmp256, IcoFrameEncoding.Png));

//Save ico image file
ico.Save ("GecDocs.ico") ;

Read Images from ICO File

You can load the image data in ICO format from a file, stream, or an array of bytes. It can then be saved to a stream or
file. The Gcelco class must be disposed off after use, to prevent memory loss in image frames. Also, dispose off any
removed frames from the collection.

To read a multiframe ICO file and save its frames as separate PNG images:

1. Load an ICO file by instantiating the Gclco class.
2. Convert the ICO frames to GcBitmap and save them as separate PNG files.
C#

//Load an ico file
using (var ico = new GcIco ("Windows.ico"))

{

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

for (int 1

{

0; 1 < ico.Frames.Count; i++)

//Save png file for every ico frame

using (var bmp = ico.Frames[i].ToGcBitmap())

{
bmp.SaveAsPng ($"image{i}.png");

Limitations

® Some rare frame encodings, such as indexed images with 2 bits per pixel, are not supported.
® Bitmap compressions other than BI_RGB, are not supported.

® CUR format has limited support (Gclco does not distinguish it from ICO and cannot save images in CUR
format).

© 2023 MESCIUS inc. All rights reserved.

40

Document Solutions for Imaging 41

Work with SVG Files

Dslmaging supports SVG (Scalable Vector Graphics) image file format which allows you to render vector images at any
size without loss of quality.

The GeSvgDocument class is provided in the GrapeCity.Documents.Svg namespace in the DsImaging library. This
class allows you to create, load, inspect, modify and save the internal structure of an SVG image.

SVG graphics can be loaded from files or strings into the object model of GeSvgDocument class, further drawn to
the GeGraphics class to effectively output the result to GcPdfDocument, GeBitmap or GcWicBitmap classes. SVG

documents can be drawn to objects derived from GcGraphics, such as GePdfGraphics or GeBitmapGraphics using the
GcGraphics.DrawSvg method overloads.

Render SVG to PNG

To render an SVG image to a PNG image and output the result to GeBitmap class:

1. Load an SVG image by using the FromFile method of GeSvgDocument class.
2. Initialize the GcBitmap class and create a drawing surface using CreateGraphics method of the GeBitmap class.
3. Draw the specified SVG document at a location in PDF document by using DrawSvg method of GcGraphics

class.
4. Save the image to a file in PNG format using SaveAsPng method.
C#
using var svg = GcSvgDocument.FromFile ("Smiling-Girl.svg");

var rect = svg.Measure (PointF.Empty) ;

float factor 1.5£;

using var bmp = new GcBitmap ((int) (rect.Width * factor + 0.95f), (int)
(rect.Height * factor + 0.95f), true, 96f * factor, 96f * factor);
using (var g = bmp.CreateGraphics(Color.White))

{

g.DrawSvg (svg, new PointF (-rect.X, -rect.Y));
}
bmp.SaveAsPng ("Smiling-Girl.png") ;

Similarly as above, use the following code to render an SVG image to a PNG image and output the result to
GcWicBitmap class:

C#

using var svg

GcSvgDocument.FromFile ("Smiling-Girl.svg");
var rect = svg.Measure (PointF.Empty);
float factor = 1.5f;
using var bmp = new GcWicBitmap ((int) (rect.Width * factor + 0.95f), (int) (rect.Height
* factor + 0.95f), true, 96f * factor, 96f * factor);
using (var g = bmp.CreateGraphics (Color.White))
{
g.DrawSvg(svg, new PointF(-rect.X, -rect.Y));
}
bmp.SaveAsPng ("Smiling-Girl.png") ;

The output of above code snippets will look like below:

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 42

You can also render an SVG image to a PDF document. For more information, refer Images topic in DsPdf docs.

Render Graphics and Text to SVG

Dslmaging lets you render graphics and text on a GcSvgDocument by using ToSvgDocument method of
the GeSvgGraphics class. This class is derived from the GcGraphics class.

By default, the method saves text as paths in an SVG document. However, by setting GcGraphics.DrawTextAsPath
property to false, you can save the text using the standard SVG text elements. While drawing strings or TextLayout
objects using paths ensures that the resulting SVG image looks as expected, rendering them as text elements lets you
select, copy or even search text fragments. However, the text layout depends on the specific fonts. Hence, DsImaging
lets you embed fonts to the output SVG file by setting the boolean property GeSvgGraphics.EmbedFonts to true.
The property is especially useful in rendering text with rare fonts or fonts unavailable on the client machine.

Dslmaging also supports specifying the positions of each individual character within the text element by setting
PreciseCharPositions property of the GeSvgGraphics class.

© 2023 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-pdf/docs/online/Images.html#i-heading-render-svg-image-to-pdf-file

Document Solutions for Imaging 43

brown 11 PRV 4

The quick The quick |

brown fox brown fox
jumps jumps
over the over the
lazy dog. lazy dog.

The code below shows how you can render the same text as path elements and text elements.

C#

var g = new GcSvgGraphics (900, 500);
var tl = g.CreateTextLayout();

var fmt = new TextFormat ()

{
FontName = "Segoe UI",
FontSize = 50,
ForeColor = Color.Green
i
tl.MaxWidth = 300;
tl.Append("The quick brown fox jumps over the lazy dog.", fmt);

// the text at the left is drawn with the text elements
g.DrawTextAsPath = false;

g.DrawTextLayout (tl, new PointF(100£f, 10f));

// the text at the right is drawn with paths
g.DrawTextAsPath = true;

g.DrawTextLayout (tl, new PointF (500f, 10f));

var svg = g.ToSvgDocument () ;

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 44

svg.Save ("BrownFox.svg", new XmlWriterSettings() { Indent = true });

Limitation

e All text effects of the TextLayout class are not supported when using the SVG text elements. Always check the
output SVG to make sure that the text elements are rendered correctly.

® Vertical text is always drawn using path elements.

® |n GecSvgDocument class, SVG files having embedded fonts are rendered without embedded fonts.

Z Note: You need to apply a license key to use the ToSvgDocument() method. Without a license key, only a few
calls of ToSvgDocument() are allowed, after which an exception is thrown. For more information about applying
license, see Apply License.

Render PDF Page as SVG

Dslmaging lets you save a PDF page or an instance of GcPdfDocument as SVG format using the
SaveAslmageOptions class. The class is used for passing options to the methods used for saving a PDF page in the
SVG format. By default, the class renders strings and TextLayoutObjects as path elements. However, to handle the text
related operations such as select, copy, search etc, you can also render SVG with the text as text elements by setting
the DrawTextAsPath property to false. To handle fonts while working with text, the SaveAsImageOptions class
provides EmbedSvgFonts property to embed font subsets to the output SVG file. The property is set to false by
default which means fonts are not embedded. You can set this property to true to cater to some rare fonts or fonts
that might not be available on the client machine.

The SVG format has the ability to specify positions of each individual characters within the text element. This mode
can be enabled using the PreciseCharPositions properties of the SaveAsimageOptions classes. The
PreciseCharPositions property is set to true by default because the fonts embedded in PDF documents do not often
contain the positioning tables. In some cases, setting character positions also helps when the proposed font is not
available on the client machine and the SVG text element is rendered using a fallback font.

The code below shows how you can render a PDF page as SVG using path elements and using text elements.

C#

var pdfDoc = new GcPdfDocument () ;
using (var fs = new FileStream(@"DOC 2317 MS.pdf", FileMode.Open,
FileAccess.Read, FileShare.Read))
{
pdfDoc.Load (fs) ;
var page = pdfDoc.Pages[0];

// save the SVG with text elements and embedded fonts
page.SaveAsSvg ("DOC 2317 MS 1.svg", null,
options: new SaveAsImageOptions () { Zoom = 2f, DrawSvgTextAsPath =
false, EmbedSvgFonts = true },
new XmlWriterSettings () { Indent = true });

// save the SVG with all text drawn as paths
page.SaveAsSvg ("DOC_ 2317 MS 2.svg", null,

new SaveAsImageOptions () { Zoom = 2f 1},

new XmlWriterSettings () { Indent = true });

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 45

Limitations:

® Vertical text is always drawn using path elements.

® A PDF page saved as an SVG file renders all text fragments drawn with CFF, Type1, and incomplete OpenType
fonts as paths.

® |n GcSvgDocument class, SVG files having embedded fonts are rendered without embedded fonts.
Save SVG to File or Stream

Dslmaging lets you save a newly created SVG document or a modified document as a file or a stream. You can use
the GcSvgDocument.Save method to serialize the new or modified SVG document to a file or a stream.

C#

using var svg = GcSvgDocument.FromFile ("cerdito.svg");

var paint = new SvgPaint (Color.Bisque);

foreach (var elem in svg.GetElementsByClass ("rose"))

{
elem.Fill = paint;

svg.Save ("cerdito2.svg", new XmlWriterSettings () { Indent

true });

File.WriteAllBytes ("cerdito2.svgz", svg.ToSvgz()):;
Limitations

® The supported elements in SVG files are svg, g, defs, style, use, symbol, image, path, circle, ellipse, line,
polygon, polyline, rect, clipPath, marker, pattern, radialGradient, linearGradient, stop, title, metadata and desc.
When rendering SVG content that contains an unsupported element or attribute, the unsupported entity is
ignored. The remainder of the content is rendered as faithfully as possible.

® The image element is only supported if its href attribute is set to a base64-encoded image. File and remote
references are not supported.

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 46

Work with WebP Files

WebP is a modern and widespread image file format to showcase high-quality images without affecting website
performance. This format is supported by most of the web browsers.

In DsImaging, you can load WebP images using Load method of the GeBitmap class wherein you can load images
from file, stream and byte arrays. You can also load an image by using constructor of the GcBitmap class. For details
about loading images, see Load Image.

To save an image to the WebP format, you can use SaveAsWebp method of the GeBitmap class.

C#

// Converting a JPG image to WEBP format

using var bmp new GcBitmap () ;

bmp.Load ("image.jpg") ;
bmp.SaveAsWebp ("image.webp", null, false, 50);

Limitations

® Saving an image with transparency in lossy WebP format may result in a relatively large image file.
® Saving an image to lossless WebP format using high quality encoding may result in slow performance.

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 47

Process Image

Dslmaging allows you to process images in different ways, such as alter the image size, crop, rotate, flip image, and change image
resolution. It provides various properties and methods, such as Resize, FlipRotate, etc. in the GeBitmap class to handle such type
of processing.

Resize Image
DsImaging lets you reduce or enlarge an image using Resize method of the GeBitmap class. The Resize method takes
InterpolationMode as a parameter to generate the transformed image which is stored as a GeBitmap instance. The interpolation

parameter can be set using the InterpolationMode enumeration which specifies the algorithm used to scale images.

Original Image

Image with reduced size Enlarged image

To resize an image:

1. Initialize the GeBitmap class.

2. Load an image in the GcBitmap instance.

3. Calculate the new height and width of the image for scaling the image.

4. Invoke the Resize method of GcBitmap class with new height, width, and interpolation mode as its parameters.

C#

//Get the image path
var origSmallImagePath = Path.Combine ("Resources", "Images",
"puffins-small.jpg");

//Initialize GcBitmap
GcBitmap origlLargeBmp = new GcBitmap () ;

GcBitmap origSmallBmp = new GcBitmap () ;

//Load image from file

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 48

origLargeBmp.Load (origSmallImagePath) ;
origSmallBmp.Load(origSmallImagePath) ;

//Reduce image

int rwidth = origLargeBmp.PixelWidth - 564;

int rheight = origLargeBmp.PixelHeight - 376;

GcBitmap smallBmp = origlargeBmp.Resize (rwidth, rheight,
InterpolationMode.Linear) ;

//Enlarge image

int ewidth = origSmallBmp.PixelWidth + 156;

int eheight = origSmallBmp.PixelHeight + 54;

GcBitmap largeBmp = origSmallBmp.Resize (ewidth, eheight,
InterpolationMode.Linear) ;

//Save scaled image to file

smallBmp.SaveAsJpeqg ("puffins-scale-small.jpg") ;
largeBmp.SaveAsJpeg ("puffins-scale-large.jpg") ;

Back to Top

Crop Image

Image cropping is usually done to remove the extraneous part of an image in order to improve its framing, to change the aspect
ratio and to isolate a particular object from its background. Dslmaging allows you to crop an image using Clip method of the

GcBitmap class. This method creates new GeBitmap instance that stores the cropped fragment of the original image.

Original Image Cropped Image

To crop an image:

1. Load an image in the GcBitmap instance.

2. Define a rectangle with specified location and size which is to be cropped.

3. Invoke the Clip method of GeBitmap class while specifying the rectangle to separate the required image fragment from the
original image.
C#

//Get the image path
var origImagePath = Path.Combine ("Resources", "Images",
"color-vegetables.jpg");

//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap () ;

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 49

//Load image from file
origBmp.Load (origImagePath) ;

//Crop image
Rectangle clipRec = new Rectangle (661, 327, 508, 878);
GcBitmap clipbmp = origBmp.Clip (clipRec);

//Save cropped image to file
clipbmp.SaveAsJpeg ("color-vegetables-crop.jpg") ;

Back to Top

Rotate and Flip Image

An image can be rotated at different angles and flipped to create its mirror image. Dsimaging supports both rotation and flipping
of an image through FlipRotate method of the GcBitmap class. This method accepts a parameter of type FlipRotateAction
enumeration which specifies flip and rotation transformations. Using FlipRotateAction enumeration, an image can be

rotated clockwise at 90, 180, or 270 degrees and flipped horizontally or vertically. The enumeration also provides an option to flip
an image horizontally with a clockwise rotation of 90 or 270 degrees.

Original Image

Rotated Image Flipped Image

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 50

To rotate an image clockwise at 90 degree:

1. Load an image in a GcBitmap instance.
2. Call the FlipRotate method of GcBitmap class while specifying the FlipRotateAction to produce an image rotated clockwise
at 90 degrees.

C#
//Get the image path

var origImagePath = Path.Combine ("Resources", "Images",
"color-vegetables.jpg") ;

//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap () ;

//Load image from file
origBmp.Load (origImagePath) ;

//Rotate image by 90 degree
GcBitmap rotatebmp = origBmp.FlipRotate (FlipRotateAction.Rotate90);

//Save rotated image to file
rotatebmp.SaveAsJpeg ("color-vegetables-rotate.jpg");

To flip an image horizontally:

1. Load an image in a GeBitmap instance.
2. Call the FlipRotate method of GeBitmap class while specifying the FlipRotateAction to flip the pixels around the vertical y-
axis which produces a mirror image.

C#

//Get the image path
var origImagePath = Path.Combine ("Resources", "Images",
"color-vegetables.jpg");

//Initialize GcBitmap

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 51

GcBitmap origBmp = new GcBitmap () ;

//Load image from file
origBmp.Load (origImagePath) ;

//Flip image horizontally
GcBitmap flipbmp = origBmp.FlipRotate (FlipRotateAction.FlipHorizontal);

//Save image to file

flipbmp.SaveAsJpeg ("color-vegetables-flip.jpg");
Back to Top

Clear Image

In DsImaging, you can remove text and graphics from GcBitmap using Clear method of the GeBitmap class. It leaves a specified
color on the surface.

C#

//Initialize GcBitmap with the expected height/width
var origBmp = new GcBitmap (pixelWidth, pixelHeight, true, dpiX, dpiY);

//Clear image

origBmp.Clear (Color.LightBlue) ;

//Save image to file
origBmp.SaveAsdJpeg ("color-vegetables-clear.jpg");

Back to Top

Change Resolution

Resolution of an image refers to the measurement of its output quality. Dslmaging allows you to change the resolution of an
image using SetDpi method of the GcBitmap class. The SetDpi method has following two overloads, SetDpi(float dpi) and
SetDpi (float dpiX, float dpiY). The SetDpi(float dpi) method allows you to change the physical resolution of an image by
accepting a single value for the horizontal and vertical resolution. On the other hand, the SetDpi (float dpiX, float dpiY) method
lets you change the physical resolution of an image by accepting separate values for the horizontal and the vertical resolution.

Additionally, GeBitmap class provides two properties, namely DpiX and DpiY, using which you can fetch the horizontal and vertical
resolution of the bitmap, respectively.

To change the resolution of an image:
1. Load an image from file in the GeBitmap instance.

2. Invoke the SetDpi method of GcBitmap class which accepts the new horizontal and vertical resolution as its parameters.
C#
//Get the image path

var origImagePath = Path.Combine ("Resources", "Images",
"color-vegetables.jpg");

//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap () ;

//Load image from file
origBmp.Load (origImagePath) ;

//Change image resolution

int newDpiX = 200, newDpiY = 400;
origBmp.SetDpi (newDpiX, newDpiY);

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 52

//Save image to file
origBmp.SaveAsdpeg ("color-vegetables-resolution.jpg") ;

Back to Top

Convert to Indexed Image

Dslmaging supports high quality ARGB images. However, such high quality images take more memory than the indexed images.
Hence, you can convert the ARGB images to indexed images to store them compactly. DsImaging provides two methods to
convert ARGB images to indexed images, which are Tolndexed4bppBitmap and Tolndexed8bppBitmap of the GcBitmap class.
The Tolndexed4bppBitmap method converts an image to 4 bpp (bits per pixel) indexed image which returns an instance of
the Indexed4bppBitmap class. Similarly, ToIndexed8bppBitmap method converts an image to 8 bpp indexed image which
returns an instance of Indexed8bppBitmap class. The Tolndexed4bppBitmap and Tolndexed8bppBitmap methods can take any
custom palette as a parameter while converting an image to the indexed image.

Original Image Indexed Image

To convert an image to a 4bpp indexed image using the octree color palette based on the Octree color quantization algorithm:

1. Load an image in the GeBitmap instance.

2. Generate the Octree color palette by using GenerateOctreePalette method of GcBitmap class.

3. Convert the image to 4 bpp using Tolndexed4bppBitmap method of GcBitmap class and pass the octree color palette
as its parameter.

4. Save the indexed image using the SaveAsJpeg method.

C#

//Load an image to generate a custom palette
GcBitmap bmpSrc = new GcBitmap () ;
bmpSrc.Load ("Images/peacock small.jpg");

//Generate color palette using Octree quantizer and dithering
var pal = bmpSrc.GenerateOctreePalette (16);

//Use octree palette generated above as a custom palette to create an Indexed image
Indexed4bppBitmap ind = bmpSrc.ToIndexed4bppBitmap (pal, DitheringMethod.FloydSteinberq);

ind.ToGcBitmap () .SaveAsJpeg ("Images/IndexedPeacockpall.jpg") ;

Back to Top

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 53

Combine Images

DsImaging allows you to combine multiple images with different formats to generate a new image. You can combine multiple
images and place them on one GcBitmap using BitBIt method of the GcBitmap class. The BitBlt method performs a bit-block
transfer of the color data corresponding to pixels from the specified source bitmap into the current bitmap.

To combine multiple images, say four images, with different formats into a new image:

. Create GcBitmap instances for each image.

. Load an image in each GcBitmap instance.

. Initialize a new GcBitmap instance with specified width and height, in pixel, to combine all the four images into one.

. Place all the images one by one with specified coordinates on this GcBitmap by performing bit-block transfer using BitBIt
method of the GcBitmap class.

C#

A wp

//Get the images paths

var jpglmagePath = Path.Combine ("Resources", "Images",
"gray-puffins-small.jpg");

var pnglmagePath = Path.Combine ("Resources", "Images",
"gray-dog-small.png") ;

var bmpImagePath = Path.Combine ("Resources", "Images",
"color-goldfish-small.bmp") ;

var gifImagePath = Path.Combine ("Resources", "Images",
"peacock-small.gif");

//Initialize GcBitmap instances and load an image in each instance
GcBitmap jpgBmp = new GcBitmap () s

jpgBmp.Load (jpgImagePath) ;

jpgBmp.Opaque = true;

GcBitmap pngBmp = new GcBitmap () ;
pngBmp.Load (pngImagePath) ;
pngBmp.Opaque = true;

GcBitmap bmpBmp = new GcBitmap () ;
bmpBmp . Load (bmpImagePath) ;
bmpBmp .Opaque = true;

GcBitmap gifBmp = new GcBitmap () ;
gifBmp.Load (gifImagePath) ;
gifBmp.Opaque = true;

//Concatenate the images with different formats to
//generate a new image

int w = jpgBmp.PixelWidth + 1;

int h = jpgBmp.PixelHeight + 1;

GcBitmap outBmp = new GcBitmap(w * 2, h * 2, true);
outBmp.BitBlt (jpgBmp, 0, 0);

outBmp.BitBlt (pngBmp, w, 0
outBmp.BitBlt (bmpBmp, O,
outBmp.BitBlt (gifBmp, w,

//Save concatenated image to file
outBmp.SaveAsdpeg ("color-concatenate.jpg") ;

Back to Top

Compositing Images

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 54

Compositing defines various ways in which two bitmaps can be combined into a single image. Dsimaging allows you to composite
images using Porter-Duff compositing algorithm by providing CompositeAndBlend method in the GeBitmap class. The method
takes values from CompositeMode enumeration as a parameter to generate the resultant image by compositing the source and
destination bitmap. There are 13 composite modes which can be implemented through the CompositeMode enumeration as
displayed below:

Source Image Destination Image

Destination
Over

ITElg

Source In Destination In Source Out Destination Out Source Atop

: = -
- T -
' i [

XOR Lighter

18] F

o -

Clear Copy Destination Source Over

Destination
Atop

To perform Porter-Duff compositing on two bitmaps using DestinationOver composite mode :

1. Create GcBitmap instances to load the source and destination images.
2. Invoke the CompositeAndBlend method of GeBitmap class, and pass the DestinationOver composite mode as the
parameter to combine the two images.

C#

//Load the two images to be combined
using (var dst = new GcBitmap (@"in\dst.png"))
using (var src = new GcBitmap (@"in\src.png"))
//Combine the two images using various compositing and blending modes
{
var tmp = dst.Clone();
tmp.CompositeAndBlend(src, 0, 0, CompositeMode.DestinationOver) ;
tmp.SaveAsPng (@"out\res DestinationOver.png");

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 55

Back to Top

Blend Modes

Blend mode determines how the colors of the target image and the colors of graphic primitives or images that are drawn on the
target are mixed (blended) with each other. The BlendMode enumeration is used to specify the blend mode. In DsImaging, the
blend mode can be specified in two ways:

® By setting the BlendMode property on the current instance of the GeBitmapGraphics class or directly on the
GcBitmap.Renderer (the two properties are associated with the same value internally). In this case the specified blend
mode will affect all subsequent drawing on the bitmap until changed to a different value.

® By specifying a blend mode value as a parameter of the CompositeAndBlend method of GcBitmap. In this case the
specified blend mode will only apply to the current method call. This approach is preferable if you only need to overlay two
images, and also provides other useful options.

The following example shows how the BlendMode property can be used to affect all drawing on a GecBitmapGraphics:

C#

// Use the spectrum image as the background to draw on:
using var bmp = new GcBitmap ("spectrum-pastel-500x500.png") ;
using var g = bmp.CreateGraphics();

// Draw text on the spectrum background using a few blend modes:
var rc = new RectangleF (0, 0, bmp.PixelWidth / 2, bmp.PixelHeight / 2);
var tf = new TextFormat () { FontSize = 24, FontBold = true, ForeColor = Color.Gray };
var modes = new BlendMode/[]

{ BlendMode.Multiply, BlendMode.Screen, BlendMode.ColorBurn, BlendMode.ColorDodge };
var pts = new PointF[]

{ new PointF (0, 0), new PointF (250, 0), new PointF(-250, 250), new PointF (250, 0) };
int 1 = 0;
foreach (var mode in modes)
{

g.BlendMode = mode;

rc.Offset (pts[i++]);

g.DrawString ($"This text is drawn using {g.BlendMode} blend mode.",

tf, rc, TextAlignment.Center, ParagraphAlignment.Center);

var rcb = rc;

rcb.Inflate (-2, -2);

g.DrawRectangle (rcb, Color.Red);
}
bmp.SaveAsPng ("blend-modes.png") ;
}

The output of the above code will look like below:

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 56

This te
drawn |
ColorD
plend n

To use the CompositeAndBlend method, you need to create two instances of GeBitmap. One will be the target of the operation
containing the backdrop on which to draw. The second bitmap (source) should contain the image that will be blended with the
target. You will also need to also specify the CompositeMode and other parameters. The following code shows an example:

C#

//Load the two images to be combined
GcBitmap ducky = new GcBitmap ("Images/ducky.png");
GcBitmap spectrum = new GcBitmap ("Images/spectrum.png") ;

//Combine the two images using various compositing and blending modes

spectrum.CompositeAndBlend (ducky, 0, 0, CompositeMode.SourceOver, BlendMode.ColorDodge) ;
spectrum.SaveAsPng ("BlendDucky.png") ;

Source Image Destination Image

Normal Multiply Screen Overlay

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 57

<l <N !

Darken Lighten Color Dodge ColorBurn

Hard Light Soft Light Difference Exclusion

Hue

Support for ICC Profiles

Saturation Color Luminosity

o

ICC profile is a color management standard for specifying the color attributes of imaging devices. It ensures that the colors of an
image are correctly displayed over different devices. In Dsimaging library, the ICC profile is handled as binary data and can be
extracted or embedded using lIccProfileData property of GeBitmap class. The ICC profile is supported for various image formats
such as, JPEG, PNG, TIFF and GIF.

To extract ICC profile of an image and embed it to another image:

1. Load an image in the GcBitmap instance.

2. Get the ICC profile of an image from the lccProfileData property of GecBitmap class.

3. Load another image in the GcBitmap instance to which you want to apply the ICC profile.

4. Assign the ICC profile of first image to this image using the IccProfileData property of GcBitmap class.

C#

//Get the ICCProfileData for an image and set it to another image

GcBitmap bmp = new GecBitmap () ;

bmp.Load ("Images/peacock-small.jpg") ;

var peacockICC_Data = bmp.IccProfileData;

Console.WriteLine ($"ICC Profile of peacock image consists of {bmp.IccProfileData.Length}
bytes") ;

bmp.Load ("Images/puffins-small.jpg") ;

bmp.IccProfileData = peacockICC Data;

Console.WriteLine ($"ICC Profile of peacock image copied to puffins image which now
consists of {bmp.IccProfileData.Length} bytes");

For more information about processing images using DsImaging, see DsImaging sample browser.

© 2023 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-imaging/demos/basics/miscellaneous/blending-modes/code-cs

Document Solutions for Imaging 58

Z] Note: For rendering large or complex text and graphics, you can use Skia library. For more information about the library and
its usage, see Render using Skia Library.

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 59

Apply Effects

Advanced imaging effects are helpful in a lot of scenarios such as low-color depth environment, image transmission,
medical imaging, remote-sensing, acoustic imagery and forensic surveillance imagery.

Dslmaging library offers great flexibility while working with these advanced effects which includes dithering,
thresholding, gray scaling, Gaussian blur, and various RGB effects. DsImaging provides the ApplyEffect method in
the GeBitmap class which takes the instance of class representing the effect as a parameter. These effects and the
corresponding classes are described in detail in the table below. Please note that the ApplyEffect method applies a
graphic effect to an image or a portion in-place, which means it stores the result back in the existing Bitmap object
instead of storing it in a new instance.

Grayscale BrightnessContrastEffect

TemperatureAndTintEffect Gaussian Blur

Thresholding Dithering

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

Effects

Dithering

Thresholding

Grayscaling

Gaussian Blur

RGB effects

Classes

DitheringEffect

BradleyThresholdingEffect
OtsuThresholdingEffect

GrayscaleEffect

GaussianBlurEffect

OpacityEffect
HueRotationEffect
SaturationEffect
SepiaEffect
TemperatureAndTintEffect
LuminanceToAlphaEffect
BrightnessContrastEffect

GammaCorrectionEffect

To apply a graphic effect, say dithering, on an image:

© 2023 MESCIUS inc. All rights reserved.

Descriptions

Allows you to apply dithering effect

through 9 different algorithms
which are provided by the
DitheringMethod enumeration.

Atkinson

Burks
FloydSteinberg
JarvisJudiceNinke
Sierra

SierralLite

Stucki
TwoRowsSierra
NoDithering

Allows you to apply two types of
thresholding effects, Bradley's
thresholding and Otsu's
thresholding, through
BradleyThresholdingEffect and
OtsuThresholdingEffect class
respectively.

Allows you to apply grayscale
effect as per the three grayscale
standards provided by the
GrayscaleStandard enumeration.

e BT709
® BT601
e BT2100

Allows you to create a blur effect
based on the Gaussian function
over the entire input image or a
part of the image using the Get

method of GaussianBlurEffect class.

Allows you to apply various RGB
effects using their corresponding
classes mentioned in the column
on left hand side.

Document Solutions for Imaging 61

1. Initialize the GcBitmap class.

2. Invoke Get method of the DitheringEffect class to define the dithering effect that specifies the method to be
used for dithering.

3. Apply dithering effect to an image using the ApplyEffect method which accepts the defined dithering effect as
its parameter.

C#

var imagePath = Path.Combine ("Resources", "Images",

"color-vegetables-small.jpg");

//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap (imagePath,
new Rectangle (50, 50, 1024, 1024));

//Rpply Dithering effect FloydSteinberg
origBmp.ApplyEffect (DitheringEffect.Get (DitheringMethod.FloydSteinbergqg),
new Rectangle (0, 0, 1024, 1024));

//Save Dithering effect image
origBmp.SaveAsJpeg ("Dithering.jpg");

Similarly, you can apply any other effect on images as mentioned in the table above.

Dslmaging library also provides IsBlackAndWhite and IsGrayscale methods in the GeBitmap class to check whether
the image is already black and white or grayscale. Both methods work very quickly, as GcBitmap makes it easy to
convert a colorful image to a grayscale or bi-level black and white image. These methods also skip unnecessary
conversions if the original image is already grayscale or black and white. However, if the image is colorful, these
methods just check a few pixels and return the result immediately.

The IsBlackAndWhite method checks whether all the pixels of the image are either opaque black (OxFFO00000) or
opaque white (OxFFFFFFFF). Transparent and semi-transparent pixels are neither black nor white.

The IsGrayscale method checks whether all pixels of the image are shades of gray, i.e., their alpha channel is set to
OxFF (fully opaque) and their red, green, and blue channels have the same value.

Refer to the following example code in order to check whether the image is already black and white or grayscale:

C#

// Initialize GcBitmap and load the image.

using var bmp = new GcBitmap ("grcode.png") ;

// Check if black and white is applied.
if (bmp.IsBlackAndWhite())
{

Console.WriteLine ("The image is black and white.");

// Check if grayscale is applied.
if (bmp.IsGrayscale())
{
Console.WriteLine ("The image is grayscale.");

}
Back to Top

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 62

For more information about implementation of different effects using DsImaging, see DsImaging sample browser.

© 2023 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-imaging/demos/basics/effects/dithering1/code-cs

Document Solutions for Imaging 63

Layouts

Dslmaging provides LayoutRect and other related classes in the GrapeCity.Documents.Layout namespace to place
multiple elements on a PDF page or image without having to calculate positions of each element relative to other
ones.

The LayoutRect and other related classes implement the flat layout model. There are no chains, barriers, guidelines,
biases, or other complications. Certain features of the layout model are:

Rectangles can be rotated by a multiple of 90 degrees.

Constraints can reference anchor points from other views (with different transformation matrices).

Rectangle sides can be bound to arbitrary contours.

Views can be nested, and the inner view's transformation is automatically recalculated when the outer view's
transformation changes.

LayoutHost is the main object, which defines the origin of the coordinate system. Also, this object performs layout
when all other objects are prepared and linked. LayoutHost can create views. LayoutView defines a rectangular region
with some width, height, and transformation, and the units of all sizes and coordinates are floats and can be of
arbitrary dimension.

A LayoutHost can create multiple LayoutViews with different sizes and transformations, and each LayoutView can
create multiple LayoutRects. A LayoutRect is a rectangle whose sides are parallel to the LayoutView sides. LayoutRect
is defined by four points: PO, P1, P2, and P3.

PO P1
|] |]
]]
P2 P3

The layout engine calculates the exact positions of the PO, P1, and P2 points for each LayoutRect of each LayoutView
within a LayoutHost. The size and position of a LayoutRect can be determined if some of the following parameters are
known: Width, Height, AspectRatio, Angle (as a multiple of 90 degrees), Left, Top, Right, Bottom, HorizontalCenter,
VerticalCenter. The Width, Height and AspectRatio parameters are assigned directly; however, other parameters are
usually defined as an offset or delta from the LayoutView, other rectangles, or the special anchor points.

The transformation matrix is Matrix from the GrapeCity.Documents.Common namespace. It has double precision vs.
single precision Matrix3x2 from System.Numerics. The Matrix can easily be converted to Matrix3x2, or it can be
multiplied by a Matrix3x2.

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 64

Refer to the following example code to draw a simple layout:

C#

// Initialize LayoutHost. This defines the origin of the coordinate system.
var host = new LayoutHost();

// Create LayoutView. This defines a rectangular region with some width, height, and
transformation.
LayoutView view = host.CreateView (500, 300, Matrix.Identity);

// Create lists for blue and green rectangles.
var bluelList = new List<LayoutRect>();

var greenList = new List<LayoutRect>();

// Create LayoutRect. LayoutRect is a rectangle whose sides are parallel to the owner
LayoutView sides.
LayoutRect rect = view.CreateRect();

// Set a constraint on the rotation angle of the LayoutRect.
rect.SetAngle (null, 90);

// Set width, height, and center point.

rect.SetWidth (120) ;

rect.SetHeight (80);

rect.SetHorizontalCenter (null, AnchorParam.VerticalCenter);
rect.SetVerticalCenter (null, AnchorParam.HorizontalCenter);

// Add the LayoutRect to the blue list.
bluelList.Add(rect) ;

// Add a green LayoutRect to the blue LayoutRect.
AddGreenRect (rect) ;

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 65

// Add a tiny green rectangle at the bottom left corner of the blue rectangle.
void AddGreenRect (LayoutRect r0)
{

var rl = view.CreateRect();

rl.SetWidth (r0, AnchorParam.Width, 0, 0.125f);

rl.SetHeight (r0, AnchorParam.Height, 0, 0.125f);

rl.AnchorBottomLeft (r0O, 5, 5);

greenList.Add(rl);

// Create two more blue rectangles and place them at different places in the
LayoutView.

// Add green rectangles to the blue rectangles.

rect = view.CreateRect();

rect.AnchorTopLeft (null, 0, 0, 120, 80);

bluelist.Add (rect);

AddGreenRect (rect) ;

rect = view.CreateRect();
rect.AnchorBottomRight (null, 0, 0, 120, 80);
bluelist.Add (rect);

AddGreenRect (rect) ;

// Calculate all rectangle coordinates based on the constraints provided.
host.PerformLayout () ;

// Draw the rectangles on a bitmap.

using var bmp = new GcBitmap (540, 340, true);
using (var g = bmp.CreateGraphics(Color.White))
{

var pen = new Pen(Color.Coral, 2);

// Set the transformation matrix of the LayoutView when creating the view.
var m = Matrix3x2.CreateTranslation (20, 20);
g.Transform = view.Transform.Multiply (m);

// Draw a rectangle with the corresponding values of the LayoutView.
g.DrawRectangle (view.AsRectF (), pen);

// Draw blue rectangles.

pen.Color = Color.CornflowerBlue;

for (int i = 0; 1 < bluelist.Count; i++)

{
rect = bluelist[i];
g.Transform = rect.Transform.Multiply(m);
g.DrawRectangle (rect.AsRectF (), pen);

// Draw green rectangles.
pen.Color = Color.LightGreen;

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

for (int i = 0; i1 < greenList.Count; i++)

{
rect = greenList[i];
g.Transform = rect.Transform.Multiply (m);
g.DrawRectangle (rect.AsRectF (), pen);

// Save the image.
bmp.SaveAsPng ("testl.png");

Simple Position Constraints

Simple position constraints change one of the following LayoutRect parameters: Left, Right, Top, Bottom,
HorizontalCenter, and VerticalCenter.

Refer to the following example code to draw a layout with simple position constraints:

C#

// Initialize LayoutHost. This defines the origin of the coordinate system.

var host = new LayoutHost();

// Create LayoutView. This defines a rectangular region with width and height.

LayoutView view = host.CreateView (600, 300);

// Create a left vertical line by setting AnchorParam to left.
var bL = view.CreateRect():;

bL.AnchorVerticalLine (null);

bL.SetLeft (null, AnchorParam.Left);

// Create a right vertical line by setting AnchorParam to right.

var bR = view.CreateRect():;

© 2023 MESCIUS inc. All rights reserved.

66

Document Solutions for Imaging 67

bR.AnchorVerticalLine (null);
bR.SetRight (null, AnchorParam.Right) ;

// Create a blue rectangle and set its AnchorParam.
var rl = view.CreateRect();

rl.SetTop(null, AnchorParam.VerticalCenter);
rl.SetWidth (120);

rl.SetHeight (80) ;

rl.SetLeft (bL, AnchorParam.Right, 20);

// Create a green rectangle (rotated 270 degrees or 90 degrees counterclockwise) and
set its AnchorParam.

var r2 = view.CreateRect();

r2.SetAngle (rl, 270);

r2.SetLeft (rl, AnchorParam.Bottom);

r2.SetWidth (200) ;

r2.SetHeight (80) ;

r2.SetTop(rl, AnchorParam.Right, 20);

// Create a violet rectangle and set its AnchorParam.
var r3 = view.CreateRect();

r3.SetAngle (rl, 0);

r3.S5etBottom(rl, AnchorParam.Top);

r3.SetHeight (80) ;

r3.SetLeft (r2, AnchorParam.Bottom, 20);
r3.SetRight (bR, AnchorParam.Left, -20);

// Calculate all rectangle coordinates based on the constraints provided.
host.PerformLayout () ;

// Draw the rectangles on a bitmap.

using var bmp = new GcBitmap ((int) (view.Width + 40), (int) (view.Height + 40), true);
using var g = bmp.CreateGraphics (Color.White);

var m = Matrix3x2.CreateTranslation (20, 20);

// Draw the vertical lines and rectangles.

DrawRect (bL, Color.Coral);

DrawRect (bR, Color.Coral);

DrawRect (rl, Color.CornflowerBlue);

DrawRect (r2, Color.Green);

DrawRect (r3, Color.Violet);

void DrawRect (LayoutRect r, Color c)

{
g.Transform = r.Transform.Multiply (m);
g.DrawRectangle (r.AsRectF (), new Pen(c, 2));

// Save the image.
bmp.SaveAsPng ("test2.png") ;

Chained Position Constraints

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 68

Chained position constraints set the parameters of a LayoutRect to fill the whole width or height of some area with
multiple rectangles having different proportional sizes (measured in stars). The widths or heights of the rectangles will
be proportional to their weights (number of stars). The SetLeftAndOpposite and SetBottomAndOpposite methods
are used to set the chained constraints. These methods create two constraints at once.

Refer to the following example code to draw a layout with chained position constraints:

C#

// Initialize LayoutHost. This defines the origin of the coordinate system.

var host = new LayoutHost();

// Create LayoutView. This defines a rectangular region with some width and height.
LayoutView view = host.CreateView (900, 300);

// Create a left vertical line by setting AnchorParam to left.
var bL = view.CreateRect();

bL.AnchorVerticalLine (null);

bL.SetLeft (null, AnchorParam.Left);

// Create a right vertical line by setting AnchorParam to right.
var bR = view.CreateRect();

bR.AnchorVerticalLine (null) ;

bR.SetRight (null, AnchorParam.Right);

// Create blue, green, and violet rectangles.
var rl = view.CreateRect():;

rl.AnchorTopBottom(null, 100, 100);

var r2 = view.CreateRect():;
r2.AnchorTopBottom (null, 100, 100);

var r3 = view.CreateRect();
r3.AnchorTopBottom(null, 100, 100);

var r4 = view.CreateRect();
r4.AnchorTopBottom(null, 100, 100);

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 69

var ro = view.CreateRect();
r6.AnchorTopBottom (null, 100, 100);

// Create a green rectangle rotated 90 degrees.
var r5 = view.CreateRect();

r5.SetAngle (null, 90);

r5.SetLeft (null, AnchorParam.Top, 20);
r5.5etRight (null, AnchorParam.Bottom, -20);

// Create a chain of rectangles by setting the AnchorParam. The SetLeftAndOpposite
and SetBottomAndOpposite methods are used to set chained position constraints.
rl.SetLeft (bL, AnchorParam.Right, 20);

r2.SetLeftAndOpposite(rl, AnchorParam.Right, 20);

r3.SetLeftAndOpposite (r2, AnchorParam.Right, 20);

r4.SetLeftAndOpposite (r3, AnchorParam.Right, 20);

r5.5etBottomAndOpposite (r4, AnchorParam.Right, -20);

r6.SetLeftAndOpposite (r5, AnchorParam.Top, 20);

r6.SetRight (bR, AnchorParam.Left, -20);

// Set the star and fixed widths.
rl.SetStarWidth(2);
r2.SetStarWidth(4);
r3.S5etWidth (50) ;
r4.SetStarWidth (2) ;
r6.SetStarWidth (2) ;

// Set the star height as this rectangle is rotated.
r5.5etStarHeight (4) ;

// Calculate all rectangle coordinates based on the constraints provided.
host.PerformLayout () ;

// Draw the rectangles on a bitmap.

using var bmp = new GcBitmap ((int) (view.Width + 40), (int) (view.Height + 40), true);
using var g = bmp.CreateGraphics (Color.White);

var m = Matrix3x2.CreateTranslation (20, 20);

// Draw the vertical lines and rectangles.
DrawRect (bL, Color.Coral);

DrawRect (bR, Color.Coral);
DrawRect (rl, Color.CornflowerBlue);
DrawRect (r2, Color.Green);

DrawRect (r3, Color.Violet);
DrawRect (r4, Color.CornflowerBlue);
DrawRect (r5, Color.Green);

DrawRect (r6, Color.CornflowerBlue);
void DrawRect (LayoutRect r, Color c)
{

g.Transform = r.Transform.Multiply (m);
g.DrawRectangle (r.AsRectF (), new Pen(c, 2));

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 70

// Save the image.
bmp.SaveAsPng ("test3.png") ;

Minimum or Maximum Position Constraints

Min/Max position constraints bind a single LayoutRect parameter to one or several other LayoutRects.
The AppendMinTop method is used in the following case to define the minimum top gap between the LayoutRect
and other LayoutRects.

Refer to the following example code to draw a layout with minimum position constraints:

C#

// Initialize LayoutHost. This defines the origin of the coordinate system.
var host = new LayoutHost();

// Create LayoutView. This defines a rectangular region with some width and height.
LayoutView view = host.CreateView (600, 400);

// Create an outer rectangle.
var rOuter = view.CreateRect();

rOuter.AnchorExact (null) ;
// Create an inner rectangle.

var rInner = view.CreateRect ()
rInner.AnchorBottomLeftRight (rOuter, 50, 50, 50);

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 71

// Create rectangles.

var rl = view.CreateRect():;
rl.AnchorTopLeft (rOuter, 20, 50, 200, 60);
var r2 = view.CreateRect();

r2.AnchorTopRight (rOuter, 50, 50, 40, 40);

// Set the position of the inner rectangle according to the other rectangles.
rInner.AppendMinTop (rOuter, AnchorParam.Top, 50);

rInner.AppendMinTop (rl, AnchorParam.Bottom, 20);

rInner.AppendMinTop (r2, AnchorParam.Bottom, 20);

// Calculate all rectangle coordinates based on the constraints provided.

host.PerformLayout () ;

// Draw the rectangles on a bitmap.

using var bmp = new GcBitmap ((int) (view.Width + 40), (int) (view.Height + 40), true);
using var g = bmp.CreateGraphics (Color.White);

var m = Matrix3x2.CreateTranslation (20, 20);

// Draw the rectangles.
DrawRect (rOuter, Color.Coral);
DrawRect (rInner, Color.CornflowerBlue);
DrawRect (rl, Color.Green);

DrawRect (r2, Color.Green);

void DrawRect (LayoutRect r, Color c)
{

g.Transform = r.Transform.Multiply (m);
g.DrawRectangle (r.AsRectF (), new Pen(c, 2));

// Save the image.
bmp.SaveAsPng ("test4.png") ;

Anchor Points

Anchor points set the parameters of a LayoutRect relative to a LayoutView, other LayoutRects, or the special anchor
points. The anchor points can be created with the CreatePoint method of a LayoutView or LayoutRect object.

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

Refer to the following example code to draw a layout with anchor points:

C#

// Initialize LayoutHost.

var host = new LayoutHost();

This defines the origin of the coordinate system.

712

// Create LayoutView. This defines a rectangular region with some width and height.

LayoutView view = host.CreateView (600,

// Create main rectangle.

var rMain = view.CreateRect () ;

rMain.AnchorExact (null) ;

// Create anchor points.

var apl = rMain.CreatePoint
var ap2 = rMain.CreatePoint
var ap3 = rMain.CreatePoint
var ap4 = rMain.CreatePoint

// Create four rectangles and position them as per the anchor points defined.

var rl = view.CreateRect():;

AnchorCenter (rl, apl);

var r2 = view.CreateRect () ;

AnchorCenter (r2, ap2);

var r3 = view.CreateRect():;

AnchorCenter (r3, ap3);

© 2023 MESCIUS inc. All rights reserved.

S~ N
w w w w
~ ~

~

1£ / 3
1f / 3
2f / 3
2f / 3

)
)
)
)

400) ;

’

’

’

’

Document Solutions for Imaging 73

var r4 = view.CreateRect();

AnchorCenter (r4, ap4):

void AnchorCenter (LayoutRect r, AnchorPoint ap)
{

.SetHorizontalCenter (ap);
.SetVerticalCenter (ap) ;

.SetWidth (20) ;

.SetHeight (20) ;

E B B B

// Calculate all rectangle coordinates based on the constraints provided.
host.PerformLayout () ;

// Draw the rectangles on a bitmap.

using var bmp = new GcBitmap ((int) (view.Width + 40), (int) (view.Height + 40), true);
using var g = bmp.CreateGraphics (Color.White);

var m = Matrix3x2.CreateTranslation (20, 20);

// Draw the rectangles.
DrawRect (rMain, Color.Coral);

DrawRect Color.CornflowerBlue

’
’

DrawRect Color.CornflowerBlue

(rl)
(r2,)
DrawRect (r3, Color.CornflowerBlue) ;
(rd,)

’

DrawRect Color.CornflowerBlue
void DrawRect (LayoutRect r, Color c)
{

g.Transform = r.Transform.Multiply (m) ;
g.DrawRectangle (r.AsRectF (), new Pen(c, 2));

// Save the image.
bmp.SaveAsPng ("test5.png") ;

Constraints based on other LayoutView

The LayoutRect parameters cannot be bound to a LayoutRect from another LayoutView. However, it is possible to
bind parameters to any anchor point within the same LayoutHost.

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

Refer to the following example code to draw a layout circumscribed in a layout from another LayoutView:

C#

// Initialize LayoutHost. This defines the origin of the coordinate system.
var host = new LayoutHost();

//Create rotation.

const double DegToRad = Math.PI / 180;

var ml = Matrix.CreateRotation (DegToRad * 30);
ml = ml.Translate (190, -=-50);

// Create first view and rectangle.

var viewl = host.CreateView (10, 10, ml);
var rcl = viewl.CreateRect():;
rcl.AnchorTopLeft (null, 30, 30, 300, 200);

// Create second view and rectangle.

var m2 = Matrix.CreateRotation (DegToRad * -20);
var view2 = host.CreateView (10, 10, m2);

var rc2 = view2.CreateRect () ;

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

// Create anchor points.

var apl = rcl.CreatePoint (0, 0);
var ap2 = rcl.CreatePoint (1, 0);
var ap3 = rcl.CreatePoint(l, 1);
var ap4 = rcl.CreatePoint (0, 1);

// Add constraints relative to the anchor points.
rc2.SetTop (apl, -20);

rc2.SetBottom (ap3, 20);

rc2.SetLeft (ap4, -20);

rc2.SetRight (ap2, 20);

// Calculate all rectangle coordinates based on the constraints provided.
host.PerformLayout () ;

// Draw the rectangles and ellipses on a bitmap.
using var bmp = new GcBitmap (600, 550, true);
using var g = bmp.CreateGraphics (Color.White);
var m = Matrix3x2.CreateTranslation (20, 20);

// Draw the rectangles and ellipses.
DrawRect (rcl, Color.CornflowerBlue);
DrawRect (rc2, Color.Green);

DrawPoint (apl

’

’

) .

DrawPoint (ap2) ;

DrawPoint (ap3)
)

DrawPoint (ap4) ;
void DrawRect (LayoutRect r, Color c)
{
g.Transform = r.Transform.Multiply (m) ;
g.DrawRectangle (r.AsRectF (), new Pen(c, 2));
}
void DrawPoint (AnchorPoint ap)

{

g.Transform = ap.Transform.Multiply(m);

g.DrawEllipse (new RectangleF (-5, -5, 10, 10), new Pen(Color.Coral, 2));

// Save the image.
bmp.SaveAsPng ("test6.png") ;

Dependent Views and Transformations

75

The hierarchy of LayoutViews is not necessarily flat within the same LayoutHost. Some views can be nested in other

views. When the transformation matrix of the parent LayoutView is updated, all child view transformations are

recalculated.

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

C#

// Initialize LayoutHost. This defines the origin of the coordinate system.

var host = new LayoutHost();

// Create first view and rectangle.
var viewl = host.CreateView (240, 300);
var rcl = viewl.CreateRect();

rcl.AnchorExact (null);

// Create second view and rectangle.
var view2 = host.CreateView (100, 150);
var rc?2 = view2.CreateRect();
rc2.AnchorExact (null) ;

// Create third view and rectangle.
var view3 = host.CreateView (70, 50);
var rc3 = view3.CreateRect();
rc3.AnchorExact (null) ;

//Create rotation.

const double DegToRad = Math.PI / 180;

var m2 = Matrix.CreateRotation (DegToRad * 45);
view2.SetRelativeTransform(viewl, m2.Translate (120, -100));
var m3 = Matrix.CreateRotation (DegToRad * -20);
view3.SetRelativeTransform(view2, m3.Translate(-23, 90));

// Calculate all rectangle coordinates based on the constraints provided.

host.PerformLayout () ;
// Draw the rectangles on a bitmap.
using var bmp = new GcBitmap (850, 350, true);

using var g = bmp.CreateGraphics (Color.White);

// Draw the first set of rectangles according to the first transformation matrix.

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 77

var m = Matrix3x2.CreateTranslation (20, 20);
DrawRect (rcl, Color.CornflowerBlue);
DrawRect (rc2, Color.Orange);

DrawRect (rc3, Color.Violet);

// Draw the second set of rectangles according to the second transformation matrix.
viewl.Transform = Matrix.CreateTranslation (350, 50).Scale(0.7) .Rotate (DegToRad * 20);
host.PerformLayout () ;

DrawRect (rcl, Color.CornflowerBlue);

DrawRect (rc2, Color.Orange);

DrawRect (rc3, Color.Violet);

// Draw the third set of rectangles according to the third transformation matrix.
viewl.Transform = Matrix.CreateTranslation (520, 200).Scale(0.8) .Rotate (DegToRad * -
70) ;
host.PerformLayout () ;
DrawRect (rcl, Color.CornflowerBlue);
DrawRect (rc2, Color.Orange);
DrawRect (rc3, Color.Violet);
void DrawRect (LayoutRect r, Color c)
{
g.Transform = r.Transform.Multiply (m) ;
g.DrawRectangle (r.AsRectF (), new Pen(c, 2));

// Save the image.
bmp.SaveAsPng ("test7.png") ;

Contours

Contour is a closed figure drawn through anchor points. One side of a LayoutRect can be bound to one or several
contours. From LayoutRect's point of view, contours consist of the outer area, the inner area, and the border area.
Rectangles can be bound to positions where one area changes to another. The CreateContour method of LayoutView
class creates an object of Contour class, which is used to draw a contour.

© 2023 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

78

C#

// Initialize LayoutHost. This defines the origin of the coordinate system.

var host = new LayoutHost();

// Create LayoutView. This defines a rectangular region with some width and height.

LayoutView view = host.CreateView (800, 400);

// Create a contour.

var contour = view.CreateContour () ;
contour.AddPoints (new AnchorPoint/[]

{

400, 0),

, 600, 400),
, 400, 200),
200, 400)

view.CreatePoint (0,

~

view.CreatePoint (0,

4

0
0
0
0

o O O O

~

(
(
view.CreatePoint (
view.CreatePoint (O,

1)

// Create first row of rectangles.
var rcll = view.CreateRect();
rcll.AnchorLeftTopBottom(null, 0, 20, 310);

rcll.AppendMaxRight (contour, ContourPosition.FirstInOutside);

var rcl2 = view.CreateRect();
rcl2.AnchorRightTopBottom(null, 0, 20, 310);
rcl2.AppendMinLeft (contour, ContourPosition.FirstInOutside);

// Create second row of rectangles.
var rc2l = v