
P a g e | 1

Excerpt from “How to Choose a JavaScript Framework for Your Team”
© 2018 GrapeCity, Inc. All rights reserved.

The Rich History of JavaScript
By Christian Gaetano

avaScript wasn't always the grand language

used to build massive framework systems that

it is today. For a long time following its

inception, JavaScript

was mostly used for gimmicky

website effects, like firework

animations. It's come a long

way from its archaic

beginnings. The best way to

see this dramatic, if gradual,

improvement is to look at the ECMAScript

standardization of JavaScript.

If you know what JavaScript is, then you also know

what ECMAScript is. These two titles both refer to

the same programming

language. The colloquial

name "JavaScript" is a

strategic misnomer. Even

though JavaScript syntax

bears some resemblance

to Java, the languages

vary widely on their core principles. Brendan Eich,

a former Netscape employee credited with creating

JavaScript in 1995, coined the name JavaScript due

to Java's immense popularity at the time. Without

this marketing ploy, JavaScript may not have been

adopted by the community at large. On the other

hand, that original name has left web developers

with a confusing conundrum in modern-day usage

of the language. Even though "JavaScript" is now

universally recognized, its etymology often remains

a mystery.

The European Computer

Manufacturers Association

hortly after JavaScript's creation, the

European Computer Manufacturers

Association (ECMA), which puts forth

standards for many modern technological

protocols and programming

languages, was tasked with

standardizing the language.

From this effort was borne the

ECMAScript (ES) specification.

Although related, ECMAScript

and JavaScript are not

synonymous. JavaScript is an

implementation of the ECMAScript specification.

(Other implementations of the ES specification exist,

though they’re used much less widely than

JavaScript.) Nonetheless, because of its widespread

usage, JavaScript is the "poster child" of ECMAScript.

Generally, and especially in this e-book, any time

you see a specific ECMAScript standard revision

J

S

If you know what

JavaScript is,

then you also

know what

ECMAScript is.

P a g e | 2

Excerpt from “How to Choose a JavaScript Framework for Your Team”
© 2018 GrapeCity, Inc. All rights reserved.

mentioned, you can think of that as "how JavaScript

implements this ECMAScript standard revision."

The recently-finalized ES2015 standard is still

undergoing adoption by most major browsers and

JavaScript engines. As expected, adoption is

occurring feature-by-feature rather than holistically.

While this can muddle compatibility issues, the

upside is that it allows us to see that JavaScript is

now far separated from its original identity. No

longer a simple gimmick of a programming

language, JavaScript has adapted to address a major

issue that has fueled debate over its usefulness:

eloquence. With new features like block level

scoping and generator functions shipping in ES2015,

JavaScript can now hold its own among the

traditional "refined" programming languages like

Java and C#. Impressively, JavaScript is coming into

this role while retaining its usefulness as a

procedural, customizable language as well. All this

evolution culminates to offer a platform that is

powerful and useful, not only for the client-side web,

but also for server-side and native apps.

Understanding this history is important to

understanding the current boom in JavaScript

usage. The changes included in the recent ES2015

standardization and the advent of other new

technologies—like local storage through the browser

and web sockets—have been especially important to

enabling the "Dawn of Frameworks" that

necessitated this e-book.

Where is JavaScript Now?

lthough many have tried, it's difficult to

generate reliable statistics on exactly what

fraction of internet users have run some

form of JavaScript. Fortunately, all modern

web browsers support and enable JavaScript out of

the box. Even browsers that ship with smartphones

have JavaScript support that mirrors or outdoes their

desktop counterparts. So pretty much anyone who

has a semi-modern device has access to JavaScript

content on the web. Even if you look back several

years, you'll find that the majority of web browsers

shipped with JavaScript support enabled by default.

Even if this support is not complete (due to

compatibility issues with new syntax, etc.), most

features can be polyfilled or shimmed to make them

work in older browsers. Overall, estimates put

JavaScript accessibility near 100% of internet users.

(This doesn't account for the relatively small group

of people who voluntarily turn off JavaScript.) I'll be

the first to admit that we, as developers, have a

responsibility to make content accessible to

everyone who uses the internet. Luckily, most of the

major JavaScript frameworks provide a check and

fallback mechanism for users who can't access

JavaScript-driven apps. As a developer, you're still

responsible for providing static fallback content, but

even that can be generated using JavaScript on the

server.

The major takeaway here is that putting your money

on JavaScript support when deciding to use a

A

P a g e | 3

Excerpt from “How to Choose a JavaScript Framework for Your Team”
© 2018 GrapeCity, Inc. All rights reserved.

framework is a pretty safe bet to make. You can

count on reaching virtually all internet users, and

you can still use JavaScript to render a static fallback

if you'd like.

The idea of using JavaScript to generate and serve

static content brings up another interesting topic:

server-side code. With the advent of Node.js,

server-side JavaScript has become mainstream and

commonplace. Node provides a powerful platform

for writing reliable and

fast server-side

applications using

JavaScript, and its

scalability has made it

a viable option for

large and frequently

used server-side APIs. While it may not be obvious,

this is yet another reason to use JavaScript

frameworks. The availability of Node.js brings with it

the possibility of a unified codebase. You can

potentially integrate your entire development stack

with the JavaScript language, building a backend

with Node.js and a front-end with a JavaScript

framework, to improve workflow and team

communication.

Node.js has also introduced the web development

world to Node Package Manager (NPM), which

further facilitates

JavaScript development.

With thousands of handy pluggable modules at your

fingertips, the ability to share package

configurations for a project, and an easy install

process, NPM has revolutionized the development

world. In the scope of frameworks, NPM makes

starting up a new project and adding any popular

framework a breeze. In fact, the "Installation" pages

of almost all major JavaScript frameworks begin

immediately with an npm install instruction.

The combination of widespread browser support,

server-side platforms, and package management

solutions makes now the best time to start using a

JavaScript framework. As a matter of fact, some

recent surveys indicate that over 70% of JavaScript

developers have already used a front-end

framework, and over 95% have at least heard of one

of the frameworks discussed in this e-book. And if

everyone else is using them, there must be

something to this whole framework thing, right?

The widespread usage of JavaScript frameworks not

only indicates that they work well; it also means that

a vast array of resources and plugins have been

vetted and improved by the large JavaScript

community. It always feels better to start something

new when you know others have done it before you.

So rest assured: many have traveled and survived

the path to framework enlightenment on which

you're about to embark, and they've left some

helpful tools and tips along the way.

